Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Virtual Evaluation of PM Rotor Failure Modes and Magnet Adhesive Debonding with Cohesive Interface Approach

2024-04-09
2024-01-2725
The modern luxurious electric vehicle (EV) demands high torque and high-speed requirements with increased range. Fulfilling these requirements gives rise to the need for increased efficiency and power density of the motors in the Electric Drive Unit (EDU). Internal Permanent Magnet (IPM) motor is one of the best suited options in such scenarios because of its primary advantages of higher efficiency and precise control over torque and speed. In the IPM motor, permanent magnets are mounted within the rotor body to produce a resultant rotating magnetic field with the 3-phase AC current supply in the stator. IPM configuration provides structural integrity and high dynamic performance as the magnets are inserted within the rotor body. Adhesive glue is used to install the magnets within the laminated stack of rotor.
Technical Paper

Towards Dual and Three-Channel Electrical Architecture Design for More-Electric Engines

2018-10-30
2018-01-1935
In recent years, the More-Electric Aircraft (MEA) concept has undergone significant development and refinement, striving towards the attainment of reductions in noise and CO2 emissions, increased power transmission efficiency and improved reliability under a range of flight scenarios. The More-Electric Engine (MEE) is increasingly being seen as a key complementary system to the MEA. With this concept, conventional engine auxiliary systems (i.e. fuel pumps, oil pumps, actuators) will be replaced by electrically-driven equivalents, providing even greater scope for the combined aircraft and engine electrical power system optimisation and management. This concept, coupled with extraction of electrical power from multiple engine spools also has the potential to deliver significant fuel burn savings. To date, single or dual channel electrical power generation and distribution systems have been used in engines and aircrafts.
Technical Paper

Protection Requirements Capture for Superconducting Cables in TeDP Aircraft Using a Thermal-Electrical Cable Model

2017-09-19
2017-01-2028
Turbo-electric distributed propulsion (TeDP) for aircraft allows for the complete redesign of the airframe so that greater overall fuel burn and emissions benefits can be achieved. Whilst conventional electrical power systems may be used for smaller aircraft, large aircraft (~300 pax) are likely to require the use of superconducting electrical power systems to enable the required whole system power density and efficiency levels to be achieved. The TeDP concept requires an effective electrical fault management and protection system. However, the fault response of a superconducting TeDP power system and its components has not been well studied to date, limiting the effective capture of associated protection requirements. For example, with superconducting systems it is possible that a hotspot is formed on one of the components, such as a cable. This can result in one subsection, rather than all, of a cable quenching.
Technical Paper

State of the Art Water Wading Simulation Method to Design Under-Body Components

2015-01-14
2015-26-0188
Vehicle water wading capability refers to vehicle functional part integrity (e.g. engine under-tray, bumper cover, plastic sill cover etc.) when travelling through water. Wade testing involves vehicles being driven through different depths of water at various speeds. The test is repeated and under-body functional parts are inspected afterwards for damage. Lack of CAE capability for wading equates to late detection of failure modes which inevitably leads to expensive design change, and potentially affects program timing. It is thus of paramount importance to have a CAE capability in this area to give design loads to start with. Computational fluid dynamics (CFD) software is used to model a vehicle travelling through water at various speeds. A non-classical CFD approach was deemed necessary to model this. To validate the method, experimental testing with a simplified block was done and then verified with CFD modeling.
Technical Paper

Modelling the Fault Behaviour of a Superconducting Turboelectric Distributed Propulsion Network

2014-09-16
2014-01-2142
Turboelectric Distributed Propulsion (TeDP) is actively being investigated as a means of providing thrust in future generations of aircraft. In response to the lack of published work regarding the system-level fault behaviour of a fully superconducting network, this paper presents key points from a two stage Failure Modes and Effects Analysis (FMEA) of a representative TeDP network. The first stage FMEA examines the qualitative behaviour of various network failure modes and considers the subsequent effects on the operation of the remainder of the network, enabling the identification of key variables influencing the fault response of the network. For the second stage FMEA, the paper focuses on the characterisation of the rate at which electrical faults develop within a TeDP network.
Technical Paper

Wading Simulation - Challenges and Solutions

2014-04-01
2014-01-0936
Vehicle water wading capability refers to vehicle functional part integrity (e.g. engine under-tray, bumper cover, plastic sill cover etc.) when travelling through water. Wade testing involves vehicles being driven through different depths of water at various speeds. The test is repeated and under-body functional parts are inspected afterwards for damage. Lack of CAE capability for wading equates to late detection of failure modes which inevitably leads to expensive design change, and potentially affects program timing. It is thus of paramount importance to have a CAE capability in this area to give design loads to start with. Computational fluid dynamics (CFD) software is used to model a vehicle travelling through water at various speeds. A non-classical CFD approach was deemed necessary to model this. To validate the method, experimental testing with a simplified block was done and then verified with CFD modelling.
X