Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Technical Paper

The Effect of Temperature on the Molecular Compositions of External and Internal Gasoline Direct Injection Deposits

2021-09-21
2021-01-1188
The increased severity and prevalence of insoluble deposits formed on fuel injectors in gasoline direct injection (GDI) engines precipitates negative environmental, economic and healthcare impacts. A necessary step in mitigating deposits is to unravel the molecular compositions of these complex layered materials. But very little molecular data has been acquired. Mass spectrometry shows promise but most techniques require the use of solvents, making them unsuited for analyzing insoluble deposits. Here, we apply the high mass-resolving power and in-situ analysis capabilities of 3D OrbitrapTM secondary ion mass spectrometry (3D OrbiSIMS) to characterize deposits formed on the external tip and internal needle from a GDI injector. This is the first application of the technique to study internal GDI deposits. Polycyclic aromatic hydrocarbons (PAHs) are present up to higher maximum masses in the external deposit.
Technical Paper

Thermal Electric Analysis of Bond Wires Used in Automotive Electronic Modules

2015-04-14
2015-01-0195
Bond wires are used in automotive electronic modules to carry current from external harness to components where flexibility under thermal cyclic loading is very essential between PCB (Printed Circuit Board) and connectors. They are very thin wires (few μm) made up of gold, aluminum or copper and have to undergo mechanical reliability to withstand extreme mechanical and thermal loads during different vehicle operation scenarios. Thermal reliability of bond wire is to make sure that it can withstand prescribed electric current under given boundary conditions without fusing thereby retaining electronic module's functionality. While carrying current, bond wire by virtue of its nature resists electric current flow and generates heat also called as joule heating. Joule heating is proportional to current flow and electrical resistance and if not handled properly can lead to thermal run away conditions.
Technical Paper

Predicting Thermal Distortion Issue during Heating and Cooling of Car Bodies Inside a Paint Shop Oven Using CAE/FEA

2015-01-14
2015-26-0175
Dimensional distortion, cosmetic distortion issues can arise during heating and cooling in the paint shop processing of car bodies. A car body can be in perfect cosmetic condition as it leaves the BIW facility, yet develop distortion defects during painting. Traditionally such issues have only been detectable on new car body designs by building and painting prototypes of a new design. The timing of such activities, by their very nature, mean that precious little time is available to address these issues by design changes in today's condensed new vehicle programmes. The result is often a vehicle entering production with partial resolution of an issue, accompanied by on-going product rework and rectification activities throughout the lifecycle of the product. This created the need for developing a CAE simulation tool which could predict these issues very early during the virtual CAE build phases of a vehicle program itself.
Journal Article

Discrete Flow Mapping - A Mesh Based Simulation Tool for Mid-to-High Frequency Vibro-Acoustic Excitation of Complex Automotive Structures

2014-06-30
2014-01-2079
Modelling the vibro-acoustic properties of mechanical built-up structures is a challenging task, especially in the mid to high frequency regime, even with the computational resources available today. Standard modelling tools for complex vehicle parts include finite and boundary element methods (FEM and BEM), as well as Multi-Body Simulations (MBS). These methods are, however, robust only in the low frequency regime. In particular, FEM is not scalable to higher frequencies due to the prohibitive increase in model size. We have recently developed a new method called Discrete Flow Mapping (DFM), which extends existing high frequency methods, such as Statistical Energy Analysis or the so-called Dynamical Energy Analysis (DEA), to work on meshed structures. It provides for the first time detailed spatial information about the vibrational energy of a whole built-up structure of arbitrary complexity in this frequency range.
Journal Article

Emerging Technologies for Use in Aerospace Bonded Assemblies

2013-09-17
2013-01-2134
Several new technologies are now emerging to improve adhesive supply and formulation along with surface treatments that have the potential to offer significant improvements to both surface energy and cleanliness [3]. Additionally, the miniaturisation of laboratory techniques into portable equipment offers potential for online surface energy and chemical analysis measurement for use as quality control measures in a production environment. An overview of newly available technology is given here with several devices studied in further detail. Technologies assessed further in this paper are; portable surface contact angle measurement, ambient pressure plasma cleaning, portable FTIR measurement and adhesive mixing equipment. A number of potential applications are outlined for each device based on the operational technique. The practical aspects of implementation and the perceived technology readiness levels for operation, implementation and results are also given.
Journal Article

Improvement of Planning and Tracking of Technology Maturity Development with Focus on Manufacturing Requirements

2013-09-17
2013-01-2261
This paper details the development of a user-friendly computerised tool created to evaluate the Manufacturing Readiness Levels (MRL) of an emerging technology. The main benefits achieved are to manage technology development planning and tracking, make visually clear and standardised analysis, and improve team communication. The new approach is applied to the Technology Readiness Levels (TRL), currently used by Airbus Research & Technology (R&T) UK. The main focus is on the improvement of the analysis criteria. The first phase of the study was to interpret the manufacturing criteria used by Airbus at TRL 4, including a brief benchmarking review of similar practices in industry and other Airbus' project management tools. All information gathered contributed to the creation of a complete set of criteria.
Technical Paper

Development of an Analytical Tool for Multilayer Stack Assemblies

2011-10-06
2011-28-0083
The development of an analytical model for multilayer stack subjected to temperature change is demonstrated here. Thin continuous layers of materials bonded together deform as a plate due to their differing coefficients of thermal expansion upon subjecting the bonded materials to the change in temperature. Applications of such structures can be found in the electronics industry (the study of warpage issues in printed circuit boards) or in the aerospace industry as (the study of laminated thin sheets used as skin structures for load bearing members such as wings and fuselage). In automotive electronics, critical high-power packages (IGBT, Power FETs) include several layers of widely differing materials (aluminum, solder, copper, ceramics) subjected to wide temperature cyclic ranges. Modeling of such structures by using three-dimensional finite element methods is usually time consuming and may not exactly predict the inter-laminar strains.
Technical Paper

Diesel Injector Deposits - An Issue That Has Evolved with Engine Technology

2011-08-30
2011-01-1923
Diesel engines have traditionally been favoured in heavy-duty applications for their fuel economy, robustness, reliability and relative lack of fuel sensitivity. Recently it has seen a growth in its popularity in light duty applications due particularly to its fuel efficiency. However, as the engine technology and particularly the fuel injection equipment has evolved to meet ever stricter emissions legislation the engines have become more sensitive to deposit formation resulting from changes in fuel quality. This paper reviews bouts of concern over diesel fuel injector deposits, possible causes for the phenomenon and test methods designed to screen fuels to eliminate problems.
Journal Article

A Novel Technique for Investigating the Nature and Origins of Deposits Formed in High Pressure Fuel Injection Equipment

2009-11-02
2009-01-2637
Recent developments in diesel fuel injection equipment coupled with moves to using ULSD and biodiesel blends has seen an increase in the number of reports, from both engine manufacturers and fleet operators, regarding fuel system deposit issues. Preliminary work performed to characterise these deposits showed them to be complicated mixtures, predominantly carbon like but also containing other possible carbon precursor materials. This paper describes the application of the combination of hydropyrolysis, gas chromatography and mass spectrometry to the analysis of these deposits. It also discusses the insights that such analysis can bring to the constitution and origin of these deposits.
Technical Paper

Application of Lean Manufacturing to React to Fast Market Growth

2008-10-07
2008-36-0399
Brazilian automotive market has been growing faster than ever. In order to react properly to market increasing demand in terms of volume and diversity, production systems have to be carefully designed. Traditional manufacturing tends to react to demand increase by outsourcing or investing in new equipments or facilities. Lean thinking suggests that by reducing waste along the value stream it is possible to increase flexibility and freed resources to reduce the investment level required to cope customer’s needs. This paper presents two cases of a system redesign based on the lean manufacturing principles to support the demand.
Technical Paper

Using the Six Sigma Methodology for Process Variation Reduction

2007-11-28
2007-01-2872
This paper is about the use of the Six Sigma Methodology, to solve variation problems in the manufacture area, at one of the Delphi Automotive Systems unit that manufacturer electrical harness. The DMAIC framework was followed, the improvements were done, eliminating the rots causes, and the use of Six Sigma methodology, was showed very efficient in solve problems. The methodology power, is in using a structured frame work, the DMAIC (Define-Measure-Analyze-Improve-Control), completing by quality quality tools (Pareto Chart, Five Why's, Cause and Effect Diagram) and statistical analyses, for example: variance analyses, hypotheses tests and Design of Experiments.
Technical Paper

Diagnostic Strategies for Advanced Automotive Systems

2002-10-21
2002-21-0024
In recent years, the desire for improved vehicle performance, reliability and safety have increased the electrical content and its complexity in vehicles. Advanced automotive systems integrate sensors, controllers, actuators and communication networks. To maintain safety and reliability, a comprehensive system of diagnostics and physical and analytic redundancy are used. In some cases, diagnostic strategies based on analytical redundancy can provide detection, as well as fault-tolerance, and may provide benefits in cost, packaging, flexibility and reusability. This paper discusses a range of diagnostic methods and their applicability to advanced automotive systems such as X-by-Wire. It will also show the reduction to practice of an advanced analytical technique for an automotive application.
Technical Paper

Predictions for Nucleate Boiling - Results From a Thermal Bench Marking Exercise Under Low Flow Conditions

2002-03-04
2002-01-1028
Two predictive methods have been applied to an IC engine cooling gallery simulator to provide benchmarking heat transfer information. The object of this work was to assess the suitability and accuracy of these methods for application to future on-engine heat transfer studies. Such studies are aimed at developing predictive tools to aid in the design of precision cooling systems. The modelling techniques of Rohsenow and Chen have been used, modified and validated. Compared against experimental data, the sub-cooled form of the Chen model has been found to be most representative for the cooling gallery simulator designed specifically to meet the requirements of this work.
Technical Paper

Diagnostic Development for an Electric Power Steering System

2000-03-06
2000-01-0819
Electric power steering (EPS) is an advanced steering system that uses an electric motor to provide steering assist. Being a new technology it lacks the extensive operational history of conventional steering systems. Also conventional systems cannot be used to command an output independent of the driver input. In contrast EPS, by means of an electric motor, could be used to do so. As a result EPS systems may have additional failure modes, which need to be studied. In this paper we will consider the requirements for successful EPS operation. The steps required to develop diagnostics based on the requirements are also discussed. The results of this paper have been implemented in various EPS-based programs.
Technical Paper

Rapid Algorithm Development Tools Applied to Engine Management Systems

1998-02-23
980799
Intense competition in the automotive industry requires continuous reduction in innovation cycle time, even as corporations are downsizing and system complexity is increasing. Subsequently, the application of recently introduced Rapid Algorithm Development (RAD) tools has facilitated significant advances in the development of embedded control systems. The RAD steps include system modeling, control algorithm design, simulation analysis, automated calibration design, and vehicle implementation through automatic code generation. The application of RAD tools and the associated benefits are described, specifically in the context of Engine Management Systems (EMS). Such benefits include significant reductions in development cycle time, open architecture, automated calibration, and information reuse.
X