Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Mechanism of White Smoke Generation Derived from Hydrocarbons Accumulations on Diesel Oxidation Catalyst

2018-04-03
2018-01-0641
White smoke emission is observed at the tailpipe of diesel vehicles when unburned hydrocarbons (HCs) are adsorbed on a diesel oxidation catalyst (DOC) under low exhaust gas temperature. The purpose of this study is to gain a better understanding of white smoke emission derived from HCs, and to reduce emission levels. First, the components of HCs and the particle size distribution of white smoke emission were analyzed. It was clarified that semi-volatile organic compounds (SVOC) and water are condensed around soluble organic fraction and the order of particle size in white smoke is submicron scale. Additionally, the correlation between the behavior of white smoke emission and the amount/quality of HCs adsorbed on a DOC were investigated by examining the change of zeolite content in the DOC. It was found that the heavy HCs ratio in adsorbed HCs on DOC increases with a decrease in zeolite content when DOC inlet gas temperature is 120 °C.
Technical Paper

77 Basic Investigation of Particulate Matters (O-PM)) and Polycyclic Aromatic Hydrocarbons Emitted by Two-stroke Motorcycles

2002-10-29
2002-32-1846
Characteristics of mass emission of unburned Oil-Particulate Matter and polycyclic aromatic hydrocarbons from two-stroke scooter were investigated. The tests were carried out under with and without oxidation catalyst and various air-fuel ratio ranging from 12 to 16 at 50:1 of fuel-oil mixing ratio for easy sampling. Unburned Oil-Particulate Matter and 4- to 7-rings polycyclic aromatic hydrocarbons were trapped on filter. These compounds were analyzed by high performance liquid chromatography with fluorescence detector. Mass emission of polycyclic aromatic hydrocarbons and unburned Oil-Particulate Matter tends to decrease as air-fuel ratio which increased up to stoichiometric ratio. The highest conversion ratio of unburned Oil-Particulate Matter on the oxidation catalyst was 64%. Conversion ratio of polycyclic aromatic hydrocarbons increased as rings are smaller.
Technical Paper

Japan Clean Air Program (JCAP): Preliminary Modeling Study of Vehicle Emission Impacts on Air Quality

1999-05-03
1999-01-1482
Comparing with the previous Auto/Oil programs, the total plan and current status of the air quality modeling study in JCAP are presented. The total plan of air quality modeling study has the following characteristics: 1) Vehicle emission inventory program is developed by considering the original features of Japan. 2) Not only the urban air quality but also the road sides pollutants dispersion is evaluated. 3) The chemical reaction model for the secondary particulate formations is developed on the basis of the smog chamber experiments. 4) For the cost-effectiveness analysis of vehicle/fuel technologies, the output of the air quality modeling will be combined with the cost data of new vehicle emission reduction technologies As the first step, preliminary modeling studies are conducted to understand the overall tendency of the air quality change toward 2010 in Tokyo urban area.
X