Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Microbial Burden of Commercial Aircraft Cabin Air

2005-07-11
2005-01-3087
The microbial burdens of 69 cabin air samples collected in-flight aboard commercial airliners were assessed via culture-dependent and molecular-based microbial enumeration assays. Cabin air samples from each of four separate flights aboard two different carriers were collected via air-impingement. Microbial enumeration techniques targeting DNA, ATP, and endotoxin were employed to estimate total microbial burden. The total viable microbial population ranged from 0 to 3.6 × 104 cells per 100 liters of air, as assessed by the ATP-assay. When these same samples were plated on minimal medium, anywhere from 2 to 80% of the viable population was cultivable. Five of the 29 samples examined exhibited higher cultivable plate counts than ATP-derived viable counts, perhaps a consequence of the dormant nature (lower concentration of intracellular ATP) of cells inhabiting these air cabin samples.
Technical Paper

Implications of the VBNC State of B. cepacia and S. maltophilia on Bioreduction and Microbial Monitoring of ISS Potable Waters

2005-07-11
2005-01-2933
Certain Eubacteria enter a viable but nonculturable (VBNC) state upon encountering unfavorable environmental conditions. VBNC cells do not divide on conventional media yet remain viable and in some cases retain virulence. Here, we describe the VBNC state of two opportunistic pathogens previously isolated from ISS potable waters, Burkholderia cepacia and Stenotrophomonas maltophilia. Artificially inoculated microcosms were exposed to the biocidal agents copper (CuSO4) and iodine (I2) in an attempt to induce nonculturablility. Viability was assessed via fluorescent microscopy (direct viable count assay coupled with BacLight™ staining) and metabolic activity was monitored by quantifying both intracellular ATP and transcribed rRNA (reverse transcriptase quantitative PCR). Culturablility was lost in both B. cepacia and S. maltophilia within two days of exposure to copper or high concentrations of iodine (6 or 8 ppm).
X