Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Expanding the Analyte Set of the JPL Electronic Nose to Include Inorganic Species

2005-07-11
2005-01-2880
An array-based sensing system based on 32 polymer/carbon composite conductometric sensors is under development at JPL. Until the present phase of development, the analyte set has focused on organic compounds (common solvents) and a few selected inorganic compounds, notably ammonia and hydrazine. The present phase of JPL ENose development has added two inorganics to the analyte set: mercury and sulfur dioxide. Through models of sensor-analyte response developed under this program coupled with a literature survey, approaches to including these analytes in the ENose target set have been determined.
Technical Paper

Toward A Second Generation Electronic Nose at JPL: Sensing Film Optimization Studies

2001-07-09
2001-01-2308
Development of a second generation Electronic Nose at JPL is focusing on optimization of the sensing films to increase sensitivity and optimization of the array. Toward this goal, studies have focused on sources of noise in the films, alternatives to carbon black as conductive medium, measurement techniques, and development of an analytical approach to polymer selection to maximize the abilities of the array to distinguish among compounds.
Technical Paper

Slow Reversible and Quasi-Reversible Performance Changes in AMTEC Electrodes and Electrolytes

1999-08-02
1999-01-2705
This paper reports several slow reversible and quasi-reversible processes which occur in the porous electrode/solid electrolyte combination at AMTEC operating temperatures. These processes help to elucidate the evolution of the electrode and electrolyte characteristics with time. They also demonstrate that the atomic constituents of the electrode/electrolyte engage in significant dynamic motion. We report the stability of the sodium beta“-alumina phase in low pressure sodium vapor at 1173K up to 3000 hours, and the decomposition of the sodium meta-aluminate (NaAlO2) phase present at about 1% in the BASE ceramic, which gives rise to transient local increases in the solid electrolyte resistivity due to local micro-cracking. We also report slow apparent morphological changes, possibly surface or grain boundary reconstruction, in TiN and RhW electrodes driven by changes in the local sodium activity.
X