Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Tire Force Estimation Using Intelligent Tire System Detecting Carcass Deformation

2024-04-09
2024-01-2293
In this paper, an intelligent tire system is designed to estimate tire force by detecting the tire carcass deformation. The intelligent tire system includes a set of marker points on the inner liner of the tire to locate the position of tire carcass and a camera mounted on the rim to capture the position of these points under different driving conditions. An image recognition program is used to identify the coordinates of the marker points in order to determine the deformation of the tire carcass. According to the tire carcass stiffness test and the general tire carcass deformation theory, an approximate linear relationship between tire force and carcass deformation in all directions was obtained. The vertical force of the tire is determined by the distance between adjacent marker points. The longitudinal force and lateral force of the tire are estimated by measuring the longitudinal and lateral displacements of the marker points.
Technical Paper

Road Feel Modeling and Return Control Strategy for Steer-by-Wire Systems

2024-04-09
2024-01-2316
The steer-by-wire (SBW) system, an integral component of the drive-by-wire chassis responsible for controlling the lateral motion of a vehicle, plays a pivotal role in enhancing vehicle safety. However, it poses a unique challenge concerning steering wheel return control, primarily due to its fundamental characteristic of severing the mechanical connection between the steering wheel and the turning wheel. This disconnect results in the inability to directly transmit the self-aligning torque to the steering wheel, giving rise to complications in ensuring a seamless return process. In order to realize precise control of steering wheel return, solving the problem of insufficient low-speed return and high-speed return overshoot of the steering wheel of the SBW system, this paper proposes a steering wheel active return control strategy for SBW system based on the backstepping control method.
Technical Paper

Research on Intake System Noise Prediction and Analysis for a Commercial Vehicle with Air Compressor Model

2023-04-11
2023-01-0431
Intake system is an important noise source for commercial vehicles, which has a significant impact on their NVH performance. To predict the intake noise more accurately, a new one-dimensional prediction model is proposed in this paper. An air compressor model is introduced into the traditional model, and the acoustic properties of the intake system are simulated by GT-power. The simulation data of the inlet noise is obtained to make a comparison with the inlet noise data acquired from a test. The result shows that the proposed model can make a more precise prediction of the inlet noise. Compared with the traditional model, the proposed model can identify the noise coming from the air compressor, and achieve a more accurate prediction of the total sound pressure level of the inlet noise.
Technical Paper

Hierarchical Control Strategy of Predictive Energy Management for Hybrid Commercial Vehicle Based on ADAS Map

2023-04-11
2023-01-0543
Considering the change of vehicle future power demand in the process of energy distribution can improve the fuel saving effect of hybrid system. However, current studies are mostly based on historical information to predict the future power demand, where it is difficult to guarantee the accuracy of prediction. To tackle this problem, this paper combines hybrid energy management with predictive cruise control, proposing a hierarchical control strategy of predictive energy management (PEM) that includes two layers of algorithms for speed planning and energy distribution. In the interest of decreasing the energy consumed by power components and ensuring transportation timeliness, the upper-level introduces a predictive cruise control algorithm while considering vehicle weight and road slope, planning the future vehicle speed during long-distance driving.
Technical Paper

Study on Influencing Factors of Hippocampal Injury in Closed Head Impact Experiments of Rats Using Orthogonal Experimental Design Method

2023-04-11
2023-01-0001
The hippocampus plays a crucial role in brain function and is one of the important areas of concern in closed head injury. Hippocampal injury is related to a variety of factors including the strength of mechanical load, animal age, and helmet material. To investigate the order of these factors on hippocampal injury, a three-factor, three-level experimental protocol was established using the L9(34) orthogonal table. A closed head injury experiment regarding impact strength (0.3MPa, 0.5MPa, 0.7MPa), rat age (eight- week-old, ten-week-old, twelve-week-old), and helmet material (steel, plastic, rubber) were achieved by striking the rat's head with a pneumatic-driven impactor. The number of hippocampal CA3 cells was used as an evaluation indicator. The contribution of factors to the indicators and the confidence level were obtained by analysis of variance.
Technical Paper

Generation Mechanism Analysis and Calculation Method of Loader Parasitic Power Based on Tire Radius Difference

2022-12-09
2022-01-5102
The powers generated by the skidding and slipping of a vehicle in unit time during driving are referred to as parasitic power. It has significant effects on wear on the tires, service life, and overall efficiency. However, existing methods to calculate parasitic power expressions that are not solvable in some cases, the reasonableness of the results of their calculations cannot be verified by experiments and the parameters of the loader cannot be calculated during the design of the vehicle. In this paper, we systematically analyze the mechanism of generation of parasitic power based on the differences in the radii of the tires of loaders. We innovatively propose a theoretical calculation method to calculate the wheel circumference parasitic work during the design of the loader. The results of experiments show that errors between the theoretical and experimental values of the wheel circumference parasitic work calculated under various working conditions were smaller than 5%.
Technical Paper

Research on Autonomous Driving Decision Based on Improved Deep Deterministic Policy Algorithm

2022-03-29
2022-01-0161
Autonomous driving technology, as the product of the fifth stage of the information technology revolution, is of great significance for improving urban traffic and environmentally friendly sustainable development. Autonomous driving can be divided into three main modules. The input of the decision module is the perception information from the perception module and the output of the control strategy to the control module. The deep reinforcement learning method proposes an end-to-end decision-making system design scheme. This paper adopts the Deep Deterministic Policy Gradient Algorithm (DDPG) that incorporates the Priority Experience Playback (PER) method. The framework of the algorithm is based on the actor-critic network structure model. The model takes the continuously acquired perception information as input and the continuous control of the vehicle as output.
Technical Paper

Slope Starting Control of Off-Road Vehicle with 32-Speed Binary Logic Automatic Transmission

2022-01-03
2022-01-5001
Taking an off-road vehicle equipped with 32-speed binary logic automatic transmission (AT) as the research object, the slope starting control research is carried out. The slope starting process is divided into the overcoming resistance stage, the sliding friction stage, and the synchronization stage. The control strategies for each stage are designed respectively. Focusing on the control of the sliding friction stage, the equivalent two-speed model of the starting clutch is established, which realizes the calculation of the speed difference and the slip rate between the driving and driven ends of the starting clutch. Furthermore, the slope starting control strategy based on the proportional-integral-derivative (PID) control of the clutch slip rate is designed. Through the simulation tests of the vehicle starting at different slopes, the correctness of the slope starting control strategy has been verified by MATLAB/Simulink.
Technical Paper

Parameter Matching of Planetary Gearset Characteristic Parameter of Power-Spilt Hybrid Vehicle

2021-09-16
2021-01-5088
To quickly and efficiently match the planetary gearset characteristic parameter of power-spilt hybrid vehicles so that their oil-saving potential can be maximized, this study proposes a parameter matching method that comprehensively considers energy management strategy and driving cycle based on an analysis of vehicle instantaneous efficiency. The method is used to match the planetary characteristic parameter of a power-split hybrid light truck. The relevant conclusions are compared with the influence of various planetary characteristic parameters on fuel consumption obtained through simulation under typical operating conditions. The simulation results show that the influence laws of the various planetary characteristic parameters on vehicle average efficiency are similar to those on fuel consumption. The proposed parameter-matching method based on vehicle efficiency analysis can effectively match the planetary characteristic parameter for power-split hybrid powertrains.
Technical Paper

Scheme and Structure Design of Binary Double Internal Meshing Planetary Gear Transmission

2021-04-14
2020-01-5227
Aiming at the low transmission efficiency and power density of the hydraulic automatic transmission (AT), and the increasingly complex structure of its planetary gear with the increase of transmission gears, this paper proposes a new type of binary logic transmission (BLT), which adopts the double internal meshing planetary row (DIMPR), based on a heavy-duty commercial vehicle. By introducing the concept of BLT and analyzing the transmission performance of the DIMPR, the process of scheme design of binary double internal meshing planetary gear transmission (BDIMPGT) is established. According to the structural characteristics of the DIMPG, the support structure of the planetary gear is designed based on CAD and CATIA. In the structural design of binary clutches, V-groove clutch parts are coupled to the transmission case, planetary carrier, and sun shaft, respectively, in each DIMPG.
Journal Article

The Control Strategy for 4WD Hybrid Vehicle Based on Wavelet Transform

2021-04-06
2021-01-0785
In this paper, in order to avoid the frequent switching of engine operating points and improve the fuel economy during driving, this paper proposes a control strategy for the 4-wheel drive (4WD) hybrid vehicle based on wavelet transform. First of all, the system configuration and the original control strategy of the 4WD hybrid vehicle were introduced and analyzed, which summarized the shortcomings of this control strategy. Then, based on the analyze of the original control strategy, the wavelet transform was used to overcome its weaknesses. By taking advantage over the superiority of the wavelet transform method in multi signal disposition, the demand power of vehicle was decomposed into the stable drive power and the instantaneous response power, which were distributed to engine and electric motor respectively. This process was carried out under different driving modes.
Technical Paper

Coordinated Control of Continuously Variable Transmission Speed Ratio in Engine Starting-Up for Hybrid Electric Vehicle

2021-03-16
2021-01-5003
In order to improve the mode switching performance of parallel hybrid electric vehicles (PHEV) and make better use of the dynamics of the vehicle, this paper proposes a three-stage control method for the start-up mode of start-up, speed synchronization, and clutch slip based on the response characteristics of actual vehicle components and the complex working conditions of the actual road. In the speed synchronization phase, a coordinated control method of “engine speed active following + continuously variable transmission (CVT) speed ratio motor speed limiting” is proposed. The real vehicle test results show that the engine starting-up coordinated control method can significantly accelerate the speed synchronization and shorten the starting-up mode duration during the rapid acceleration, so that the vehicle’s power performance can be well played and the ride comfort can be effectively guaranteed.
Technical Paper

Active Interior Noise Control for Passenger Vehicle Using the Notch Dual-Channel Algorithms with Two Different Predictive Filters

2021-02-18
2020-01-5228
Active control of low-frequency engine order noise helps to improve the passenger’s sense of hearing, so it has become one of the hot topics in the automotive field. Depth improvement of active noise control (ANC) performance from the perspective of novel algorithms has attracted the attention of researchers. The conventional notch dual-channel filtered-x least mean square (NDFxLMS) algorithm shows acceptable noise reduction for the elimination of engine order noise. To further enhance the steady-state ANC effect, this paper proposed two new notch algorithms: the notch dual-channel filtered-x recursive least square (NDFxRLS) algorithm and the notch dual-channel affine projection (NDAP) algorithm. Vehicle simulation tests show that both the proposed algorithms, especially the NDFxRLS algorithm, have a satisfying performance for the cancellation of interior noise from the engine.
Technical Paper

Parametric Investigation of Two-Stage Pilot Diesel Injection on the Combustion and Emissions of a Pilot Diesel Compression Ignition Natural Gas Engine at Low Load

2020-06-23
2020-01-5056
The purpose of this study is to evaluate the impact of two-stage pilot injection parameters on the combustion and emissions of pilot diesel compression ignition natural gas (CING) engine at low load. Experiments were performed using a diesel/natural gas dual-fuel engine, which was modified from a six-cylinder diesel engine. The effect of injection timing and injection pressure of two-stage pilot diesel were analyzed in order to reduce both the fuel consumption and total hydrocarbon (HC) and carbon monoxide (CO) emissions under low load conditions. The results indicate that, because injection timing can determine the degree of pilot diesel stratification, in-cylinder thermodynamic state, and the available mixing time prior to the combustion, the combustion process can be controlled and optimized through adjusting injection timing.
Technical Paper

Temperature Compensation Control Strategy of Creep Mode for Hydraulic Hub-Motor Drive Vehicle

2020-06-09
2020-01-5059
Based on traditional heavy commercial vehicles, a hydraulic hub-motor drive vehicle (HHMDV) is equipped with a set of hydraulic hub-motor auxiliary system (HHMAS) to improve the traction performance and adaptability under complex conditions. In the case of low-speed operation or mechanical transmission failure, the creep mode (CM) can be used to drive the vehicle. Aiming at a common hydraulic system problem that flow loss increases due to temperature variation, a temperature compensation control strategy of the CM is proposed in this paper. By analyzing the speed regulation characteristics of the closed loop of the system in the CM, combined with the efficiency of the hydraulic variable pump (HP) and the hydraulic quantitative motor (HM), and aiming at adjusting the engine work in the optimal curve of the engine, the temperature compensation factor is introduced to control the HP displacement with hydraulic stepless speed regulation.
Technical Paper

Temperature Compensation Control Strategy of Assist Mode for Hydraulic Hub-Motor Drive Vehicle

2020-04-21
2020-01-5046
Based on the traditional heavy commercial vehicle, hydraulic hub-motor drive vehicle (HHMDV) is equipped with a hydraulic hub-motor auxiliary drive system, which makes the vehicle change from the rear-wheel drive to the four-wheel drive to improve the traction performance on low-adhesion road. In the typical operating mode of the vehicle, the leakage of the hydraulic system increases because of the oil temperature rising, this makes the control precision of the hydraulic system drop. Therefore, a temperature compensation control strategy for the assist mode is proposed in this paper. According to the principle of flow continuity, considering the loss of the system and the expected wheel speed, the control strategy of multifactor target pump displacement based on temperature compensation is derived. The control strategy is verified by the co-simulation platform of MATLAB/Simulink and AMESim.
Technical Paper

An Efficient Assistance Tool for Evaluating the Effect of Tire Characteristics on Vehicle Pull Problem

2020-04-14
2020-01-1237
The vehicle pull problem is very important to driving safety. Major factors that may cause the pull problem related to tire include variations of geometric dimension (e.g. RPK) and stiffness (e.g. cornering stiffness, aligning stiffness), plysteer and conicity. In previous research, the influencing mechanism of these factors was well studied. But in fact, vehicle pull problem caused by tire is probabilistic. When we assemble four tires onto the car, there could be 384 different assembly arrangements. If there are significant differences among these four tires, there will also be significant differences in the influence of different tire assembly schemes on vehicle pull, which has not been systematically discussed in previous studies. If we want to evaluate the pull performance of all these arrangements by vehicle test, it will be a time consuming process which will take almost 24 working days, along with a high test expense.
Technical Paper

Trajectory Planning and Tracking for Four-Wheel-Steering Autonomous Vehicle with V2V Communication

2020-04-14
2020-01-0114
Lane-changing is a typical traffic scene effecting on road traffic with high request for reliability, robustness and driving comfort to improve the road safety and transportation efficiency. The development of connected autonomous vehicles with V2V communication provide more advanced control strategies to research of lane-changing. Meanwhile, four-wheel steering is an effective way to improve flexibility of vehicle. The front and rear wheels rotate in opposite direction to reduce the turning radius to improve the servo agility operation at the low speed while those rotate in same direction to reduce the probability of the slip accident to improve the stability at the high speed. Hence, this paper established Four-Wheel-Steering(4WS) vehicle dynamic model and quasi real lane-changing scenes to analyze the motion constraints of the vehicles.
Technical Paper

Research on Control Strategy Optimization for Shifting Process of Pure Electric Vehicle Based on Multi-Objective Genetic Algorithm

2020-04-14
2020-01-0971
With more and more countries proposing timetables for stopping selling of fuel vehicles, China has also issued a “dual-slope” policy. As electric vehicles are the most promising new energy vehicle, which is worth researching. The integration and control of the motor and gearbox have gradually become a hot research topic due to low cost with better performance. This paper takes an electric vehicle equipped with permanent magnet synchronous motor and two-gear automatic transmission without synchronizer and clutch as the research object.
Technical Paper

Accurate Pressure Control Strategy of Electronic Stability Program Based on the Building Characteristics of High-Speed Switching Valve

2019-04-02
2019-01-1107
The Electronic Stability Program (ESP), as a key actuator of traditional automobile braking system, plays an important role in the development of intelligent vehicles by accurately controlling the pressure of wheels. However, the ESP is a highly nonlinear controlled object due to the changing of the working temperature, humidity, and hydraulic load. In this paper, an accurate pressure control strategy of single wheel during active braking of ESP is proposed, which doesn’t rely on the specific parameters of the hydraulic system and ESP. First, the structure and working principle of ESP have been introduced. Then, we discuss the possibility of Pulse Width Modulation (PWM) control based on the mathematical model of the high-speed switching valve. Subsequently, the pressure building characteristics of the inlet and outlet valves are analyzed by the hardware in the Loop (HiL) experimental platform.
X