Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Spatio-Temporal Trajectory Planning Using Search And Optimizing Method for Autonomous Driving

2024-04-09
2024-01-2563
In the field of autonomous driving trajectory planning, it’s virtual to ensure real-time planning while guaranteeing feasibility and robustness. Current widely adopted approaches include decoupling path planning and velocity planning based on optimization method, which can’t always yield optimal solutions, especially in complex dynamic scenarios. Furthermore, search-based and sampling-based solutions encounter limitations due to their low resolution and high computational costs. This paper presents a novel spatio-temporal trajectory planning approach that integrates both search-based planning and optimization-based planning method. This approach retains the advantages of search-based method, allowing for the identification of a global optimal solution through search. To address the challenge posed by the non-convex nature of the original solution space, we introduce a spatio-temporal semantic corridor structure, which constructs a convex feasible set for the problem.
Technical Paper

Driving Style Identification Strategy Based on DS Evidence Theory

2023-04-11
2023-01-0587
Driving assistance system is regarded as an effective method to improve driving safety and comfort and is widely used in automobiles. However, due to the different driving styles of different drivers, their acceptance and comfort of driving assistance systems are also different, which greatly affects the driving experience. The key to solving the problem is to let the system understand the driving style and achieve humanization or personalization. This paper focuses on clustering and identification of different driving styles. In this paper, based on the driver's real vehicle experiment, a driving data acquisition platform was built, meanwhile driving conditions were set and drivers were recruited to collect driving information. In order to facilitate the identification of driving style, the correlation analysis of driving features is conducted and the principal component analysis method is used to reduce the dimension of driving features.
Technical Paper

Deterioration Characteristic of Catalyzed DPF Applied on Diesel Truck Durable Ageing

2018-09-10
2018-01-1701
In this paper, it was researched the degradation characteristics of catalytic performance of three kinds of DPFs (C1, C2 and C3, with precious metal concentrations being 15, 25 and 35 g/ft3 respectively) after diesel truck aging. It is found out that the crystallinity of three kinds of DPF samples (Used) in full vehicle aging was higher than that of fresh samples (Fresh) and aged samples (Aged) in the laboratory. Compared with Fresh samples, the concentration of Pt atom in precious metal on the surface of Aged and Used samples tends to decrease in most cases. Activities to CO and C3H8 of Aged and Used samples of three kinds of DPFs had all been degraded, and activity degradation showed a substantial correlation with concentration reduction rate of precious metal on the carrier surface. NO2 productivity of Used samples all rose. Crystallinity of DPF samples after full vehicle aging in Inlet, Middle and Outlet areas successively increased.
Technical Paper

Research on the Classification and Identification for Personalized Driving Styles

2018-04-03
2018-01-1096
Most of the Advanced Driver Assistance System (ADAS) applications are aiming at improving both driving safety and comfort. Understanding human drivers' driving styles that make the systems more human-like or personalized for ADAS is the key to improve the system performance, in particular, the acceptance and adaption of ADAS to human drivers. The research presented in this paper focuses on the classification and identification for personalized driving styles. To motivate and reflect the information of different driving styles at the most extent, two sets, which consist of six kinds of stimuli with stochastic disturbance for the leading vehicles are created on a real-time Driver-In-the-Loop Intelligent Simulation Platform (DILISP) with PanoSim-RT®, dSPACE® and DEWETRON® and field test with both RT3000 family and RT-Range respectively.
Technical Paper

Identification of Driver Individualities Using Random Forest Model

2017-09-23
2017-01-1981
Driver individualities is crucial for the development of the Advanced Driver Assistant System (ADAS). Due to the mechanism that specific driving operation action of individual driver under typical conditions is convergent and differentiated, a novel driver individualities recognition method is constructed in this paper using random forest model. A driver behavior data acquisition system was built using dSPACE real-time simulation platform. Based on that, the driving data of the tested drivers were collected in real time. Then, we extracted main driving data by principal component analysis method. The fuzzy clustering analysis was carried out on the main driving data, and the fuzzy matrix was constructed according to the intrinsic attribute of the driving data. The drivers’ driving data were divided into multiple clusters.
Journal Article

Vehicle Longitudinal Control Algorithm Based on Iterative Learning Control

2016-04-05
2016-01-1653
Vehicle Longitudinal Control (VLC) algorithm is the basis function of automotive Cruise Control system. The main task of VLC is to achieve a longitudinal acceleration tracking controller, performance requirements of which include fast response and high tracking accuracy. At present, many control methods are used to implement vehicle longitudinal control. However, the existing methods are need to be improved because these methods need a high accurate vehicle dynamic model or a number of experiments to calibrate the parameters of controller, which are time consuming and costly. To overcome the difficulties of controller parameters calibration and accurate vehicle dynamic modeling, a vehicle longitudinal control algorithm based on iterative learning control (ILC) is proposed in this paper. The algorithm works based on the information of input and output of the system, so the method does not require a vehicle dynamics model.
Journal Article

Objective Evaluation of Interior Sound Quality in Passenger Cars Using Artificial Neural Networks

2013-04-08
2013-01-1704
In this research, the interior noise of a passenger car was measured, and the sound quality metrics including sound pressure level, loudness, sharpness, and roughness were calculated. An artificial neural network was designed to successfully apply on automotive interior noise as well as numerous different fields of technology which aim to overcome difficulties of experimentations and save cost, time and workforce. Sound pressure level, loudness, sharpness, and roughness were estimated by using the artificial neural network designed by using the experiment values. The predicted values and experiment results are compared. The comparison results show that the realized artificial intelligence model is an appropriate model to estimate the sound quality of the automotive interior noise. The reliability value is calculated as 0.9995 by using statistical analysis.
Technical Paper

An Over-Temperature Protection Control Strategy for Electric Power Steering Motor

2012-09-24
2012-01-2057
The EPS motor will be over-heated if large current lasts for a long time, which will decline the performance of EPS motor and even lead to irreparable damage. So the over-temperature protection control should be conducted in order to protect the components of EPS system, especially the durability of EPS motor. In this paper, the motor temperature was estimated according to the environmental temperature and the current of motor armature, and then the EPS assist current was limited based on the estimated temperature of motor to ensure that the EPS motor had a good working condition. So the over-temperature protection control for motor can be realized without increasing the EPS system components. Finally the control strategy for over-temperature protection was conducted in a vehicle with EPS system and its performance was verified.
Technical Paper

Identification of Powertrain Rigid-Body Properties Based on Operation Modal Method

2009-11-02
2009-01-2761
Based on the existing methodology, the operation modal method by polyreference least-squares frequency domain method is applied. A methodology of rigid-body properties identification of the non-linear stiffness and damping mounting system (the mounting system of powertrain) is introduced and validated. Then the mode parameters and inertia properties of a powertrain rigid-body have been identified by operation modal method. Finally, by the comparison between the results of experiment properties and the result of theoretical calculation, it shows that the mode parameters and inertia properties of powertrain can be identified accurately by operation modal method.
X