Refine Your Search

Topic

Search Results

Technical Paper

Mechanism for Internal Injector Deposits Formation in Heavy-duty Engines using Drop-in Fuels

2023-09-29
2023-32-0053
Heavy-duty transportation is one of the sectors that contributes to greenhouse gas emissions. One way to reduce CO2 emissions is to use drop-in fuels. However, when drop-in fuels are used, i.e., higher blends of alternative fuels are added to conventional fuels, solubility problems and precipitation in the fuel can occur. As a result, insolubles in the fuel can clog the fuel filters and interfere with the proper functioning of the injectors. This adversely affects engine performance and increases fuel consumption. These problems are expected to increase with the development of more advanced fuel systems to meet upcoming environmental regulations. This work investigates the composition of the deposits formed inside the injectors of the heavy-duty diesel engine and discusses their formation mechanism. Injectors with internal deposits were collected from field trucks throughout Europe. Similar content, location and structure were found for all the deposits in the studied injectors.
Technical Paper

Correlation of Oil Originating Particle Emissions and Knock in a PFI HD SI Engine Fueled with Methanol

2023-08-28
2023-24-0036
A viable option to reduce global warming related to internal combustion engines is to use renewable fuels, for example methanol. However, the risk of knocking combustion limits the achievable efficiency of SI engines. Hence, most high load operation is run at sub-optimal conditions to suppress knock. Normally the fuel is a limiting factor, however when running on high octane fuels such as methanol, other factors also become important. For example, oil droplets entering the combustion chamber have the possibility to locally impact both temperature and chemical composition. This may create spots with reduced octane number, hence making the engine more prone to knock. Previous research has confirmed a connection between oil droplets in the combustion chamber and knock. Furthermore, previous research has confirmed a connection between oil droplets in the combustion chamber and exhaust particle emissions.
Technical Paper

Reactivity of Diesel Soot from 6- and 8-Cylinder Heavy-Duty Engines

2023-08-28
2023-24-0119
Increasing concern for air pollution together with the introduction of new types of fuels pose new challenges to the exhaust aftertreatment system for heavy-duty (HD) vehicles. For diesel-powered engines, emissions of particulate matter (PM) is one of the main drawbacks due to its effect on health. To mitigate the tailpipe emissions of PM, heavy-duty vehicles are since Euro V equipped with a diesel particulate filter (DPF). The accumulation of particles causes flow restriction resulting in fuel penalties and decreased vehicle performance. Understanding the properties of PM produced during engine operation is important for the development and optimized control of the DPF. This study has focused on assessing the reactivity of the PM by measuring the oxidation kinetics of the carbonaceous fraction. PM was sampled from two different heavy-duty engines during various test cycles.
Journal Article

Effects of Boundary Layer and Local Volumetric Cells Refinements on Compressor Direct Noise Computation

2022-06-15
2022-01-0934
The use of turbochargers with downsized internal combustion engines improves road vehicles’ energy efficiency but introduces additional sound sources of strong acoustic annoyance on the turbocharger’s compressor side. In the present study, direct noise computations (DNC) are carried out on a passenger vehicle turbocharger compressor. The work focuses on assessing the influence of grid parameters on the acoustic predictions, to further advance the maturity of the acoustic modelling of such machines with complex three-dimensional features. The effect of the boundary layer mesh structure, and of the spatial resolution of the mesh, on the simulated acoustic signatures is investigated on detached eddy simulations (DES). Refinements in the core mesh are applied in areas of major acoustic production, to generate cells with sizes proportional to the local Taylor microscale values.
Technical Paper

An Investigation of the Degradation of Biodiesel Blends in a Heavy-Duty Diesel Engine

2022-03-29
2022-01-0512
One way to reduce carbon dioxide emissions from the current heavy-duty vehicles fleet is to replace fossil fuel with renewable fuel. This can be done by blending so-called drop-in fuels into the standard diesel fuel. However, problems such as insoluble impurities may arise when the fuels are mixed. These precipitates, known as soft particles, can cause deposits in the fuel system, e.g., injectors and fuel filters, reducing the engine´s performance. The most used drop-in fuel today is biodiesel which, is blended with different concentrations. To better understand how soft particles are formed in the vehicle´s fuel system, the degradation of biodiesel blends in the engine has been investigated. This study explores biodiesel blends´ degradation process by comparing the incoming fuel with the return fuel from a modern diesel engine to investigate how the fuel is affected by this process. The engine was run using different blends of biodiesel fuel.
Technical Paper

Characterization of Internal Diesel Injector Deposits from Heavy-Duty Vehicles

2021-09-05
2021-24-0062
Sustainable fuels can help to decrease carbon dioxide emissions in road transportation compared to standard fossil fuels. The most common sustainable fuels used today in heavy-duty applications are biodiesel and hydrogenated vegetable oil (HVO). Biodiesel and HVO are known as drop-in fuels since they are fuels that can be blended with standard diesel. However, due to changes in the chemical properties when the fuels are mixed, solubility problems in terms of precipitates may be formed. These insolubilities can lead to deposits in the fuel system, e.g., blocked fuel filters and internal injector deposits, and thus driveability problems. This study is a part of a project where the goal is to study the processes that cause the formation of deposits inside the injectors in heavy-duty vehicles. The deposits inside the injectors are known as internal diesel injector deposits (IDID).
Technical Paper

Undiluted Measurement of sub 10 nm Non-Volatile and Volatile Particle Emissions from a DISI Engine Fueled with Gasoline and Ethanol

2021-04-06
2021-01-0629
In this paper, a High-Temperature Electrical Low-Pressure Impactor (HT-ELPI+) was used to measure particles from a light-duty direct injected spark ignited (DISI) engine fueled with gasoline and ethanol. The HT-ELPI+ measured volatile and non-volatile particle emissions down to 6 nm without the need for dilution. Particle emissions were measured at four operating points while sweeping the end of injection, and at idle operation. The total particle number (PN) and particle size distribution (number and mass) for both non-volatile and volatile emissions were measured with the HT-ELPI+ and compared to the measured PN using two 71.4 times diluted Condensation Particle Counters (CPCs) with two different cut-off sizes, with 23 nm and 7 nm cut-off, respectively. The results show an increase in particle emissions in terms of particle mass and total particle number for ethanol compared to gasoline. The difference in soot mass emissions is small between the fuels.
Journal Article

On the Effects of Turbocharger on Particle Number and Size Distribution in a Heavy - Duty Diesel Engine

2020-09-27
2020-24-0007
Particles emitted from internal combustion engines have adverse health effects and the severity varies based on the particle size. A diesel particulate filter (DPF) in the after-treatment systems is employed to control the particle emissions from combustion engines. The design of a DPF depends on the nature of particle size distribution at the upstream and is important to evaluate. In heavy-duty diesel engines, the turbocharger turbine is an important component affecting the flow and particles. The turbine wheel and housing influence particle number and size. This could potentially be used to reduce particle number or change the distribution to become more favourable for filtration. This work evaluates the effect of a heavy-duty diesel engine’s turbine on particle number and size distribution.
Technical Paper

Combustion Characteristics, Performance and NOx Emissions of a Heavy-Duty Ethanol-Diesel Direct Injection Engine

2020-09-15
2020-01-2077
Diffusive combustion of direct injected ethanol is investigated in a heavy-duty single cylinder engine for a broad range of operating conditions. Ethanol has a high potential as fossil fuel alternative, as it provides a better carbon footprint and has more sustainable production pathways. The introduction of ethanol as fuel for heavy-duty compression-ignition engines can contribute to decarbonize the transport sector within a short time frame. Given the resistance to autoignition of ethanol, the engine is equipped with two injectors mounted in the same combustion chamber, allowing the simultaneous and independent actuation of the main injection of pure ethanol and a pilot injection of diesel as an ignition source. The influence of the dual-fuel injection strategy on ethanol ignition, combustion characteristics, engine performance and NOx emissions is evaluated by varying the start of injection of both fuels and the ethanol-diesel ratio.
Technical Paper

On the Effects of Urea and Water Injection on Particles across the SCR Catalyst in a Heavy - Duty Euro VI Diesel Engine

2020-09-15
2020-01-2196
Particle emissions from heavy-duty engines are regulated both by mass and number by Euro VI regulation. Understanding the evolution of particle size and number from the exhaust valve to the tail pipe is of vital importance to expand the possibilities of particle reduction. In this study, experiments were carried out on a heavy-duty Euro VI engine after-treatment system consisting of diesel oxidation catalyst, diesel particulate filter and selective catalytic reduction (SCR) unit with AdBlue injection followed by ammonia slip catalyst. The present work focusses on the SCR unit with regard to total particle number with and without nucleation particles both. Experiments were conducted by varying the AdBlue injection quantity, SCR inlet temperature [to vary the reaction temperature], exhaust mass flow rate [to vary the residence time in SCR], and fuel injection pressures [to vary inlet particle number and inlet NOx].
Technical Paper

Impact of Dynamic Exhaust Valve Modelling

2019-12-19
2019-01-2346
A method developed in SAE 2019-01-0058 to correct for deviations from quasi-steady exhaust valve flow is implemented on a single-cylinder GT-Power model and the effects on pumping work and blowdown pulse characteristics are investigated. The valve flow area is always reduced compared to the reference quasi-steady case. It decreases with higher pressure ratios over the valve and increases with higher engines speeds. The reduced flow area increases pumping work with load and engine speed, though primarily with engine speed. The magnitude of the blowdown pulse is reduced and the peak is shifted to a later crank angle.
Technical Paper

Study of Nozzle Fouling: Deposit Build-Up and Removal

2019-12-19
2019-01-2231
The global demand for decreased emission from engines and increased efficiency drives manufactures to develop more advanced fuel injection systems. Today's compression-ignited engines use common rail systems with high injection pressures and fuel injector nozzles with small orifice diameters. These systems are highly sensitive to small changes in orifice diameters since these could lead to deteriorations in spray characteristics, thus reducing engine performance and increasing emissions. Phenomena that could create problems include nozzle fouling caused by metal carboxylates or biofuels. The problems increase with extended use of biofuels. This paper reports on an experimental study of nozzle hole fouling performed on a single-cylinder engine. The aim was to identify if the solubility of the fuel has an effect on deposit build-up and, thus, the reduction in fuelling with associated torque loss, and if there is a probability of regenerating the contaminated injectors.
Technical Paper

Heavy-Duty Engine Intake Manifold Pressure Virtual Sensor

2019-04-02
2019-01-1170
Increasing demands for more efficient engines and stricter legislations on exhaust emissions require more accurate control of the engine operating parameters. Engine control is based on sensors monitoring the condition of the engine. Numerous sensors, in a complex control context, increase the complexity, the fragility and the cost of the system. An alternative to physical sensors are virtual sensors, observers used to monitor parameters of the engine thus reducing both the fragility and the production cost but with a slight increase of the complexity. In the current paper a virtual intake manifold cylinder port pressure sensor is presented. The virtual sensor is based on a compressible flow model and on the pressure signal of the intake manifold pressure sensor. It uses the linearized pressure coefficient approach to keep vital performance behaviors while still conserving calibration effort and embedded system memory.
Technical Paper

Contaminants Affecting the Formation of Soft Particles in Bio-Based Diesel Fuels during Degradation

2019-01-15
2019-01-0016
Renewable fuels are essential in the field of heavy duty transportation if we are to reach a fossil-free society in the foreseeable future. However renewable diesel fuels based on fatty acid methyl ester (FAME) might face problems with degradation and with cold flow properties. From the perspective of an engine, this may cause problems in the fuel injection system, such as fuel filter clogging and injector deposits. These phenomena, especially fuel filter clogging, can be connected to gel-like soft particles, which could originate from degradation products as well as from byproducts created during biodiesel refining. In this study, soft particles from the degradation of bio-based diesel fuel were examined. The tested fuels included hydrogenated vegetable oils (HVO), rapeseed methyl ester (RME) and 10% blend of rapeseed methyl ester with standard diesel (B10).
Technical Paper

Dynamic Exhaust Valve Flow 1-D Modelling During Blowdown Conditions

2019-01-15
2019-01-0058
To conduct system level studies on internal combustion engines reduced order models are required in order to keep the computational load below reasonable limits. By its nature a reduced order model is a simplification of reality and may introduce modeling errors. However what is of interest is the size of the error and if it is possible to reduce the error by some method. A popular system level study is gas exchange and in this paper the focus is on the exhaust valve. Generally the valve is modeled as an ideal nozzle where the flow losses are captured by reducing the flow area. As the valve moves slowly compared to the flow the process is assumed to be quasi-steady, i.e. interpolation between steady-flow measurements can be used to describe the dynamic process during valve opening. These measurements are generally done at low pressure drops, as the influence of pressure ratio is assumed to be negligible.
Technical Paper

Agglomeration and Nucleation of Non-Volatile Particles in a Particle Grouping Exhaust Pipe of a Euro VI Heavy-Duty Diesel Engine

2019-01-15
2019-01-0044
The possibility of non-volatile particle agglomeration in engine exhaust was experimentally examined in a Euro VI heavy duty engine using a variable cross section agglomeration pipe, insulated and double walled for minimal thermophoresis. The agglomeration pipe was located between the turbocharger and the exhaust treatment devices. Sampling was made across the pipe and along the centre-line of the agglomeration pipe. The performance of the agglomeration pipe was compared with an equivalent insulated straight pipe. The non-volatile total particle number and size distribution were investigated. Particle number measurements were conducted according to the guidelines from the Particle Measurement Programme. The Engine was fuelled with commercially available low sulphur S10 diesel.
Technical Paper

Future Fuels for DISI Engines: A Review on Oxygenated, Liquid Biofuels

2019-01-15
2019-01-0036
Global warming and climate change have led to a greater interest in the implementation of biofuels in internal combustion engines. In spark ignited engines, biofuels have been shown to improve efficiency and knock resistance while decreasing emissions of unburned hydrocarbons, carbon monoxide and particles. This study investigates the effect of biofuels on SI engine combustion through a graphical compilation of previously reported results. Experimental data from 88 articles were used to evaluate the trends of the addition of different biofuels in gasoline. Graphs illustrating engine performance, combustion phasing and emissions are presented in conjunction with data on the physiochemical properties of each biofuel component to understand the observed trends. Internal combustion engines have the ability to handle a wide variety of fuels resulting in a broad range of biofuel candidates.
Technical Paper

Particle Emission Measurements in a SI CNG Engine Using Oils with Controlled Ash Content

2019-01-15
2019-01-0053
Clean combustion is one of the inherent benefits of using a high methane content fuel, natural gas or biogas. A single carbon atom in the fuel molecule results, to a large extent, in particle-free combustion. This is due to the high energy required for binding multiple carbon atoms together during the combustion process, required to form soot particles. When scaling up this process and applying it in the internal combustion engine, the resulting emissions from the engine have not been observed to be as particle free as the theory on methane combustion indicates. These particles stem from the combustion of engine oil and its ash content. One common practice has been to lower the ash content to regulate the particulate emissions, as was done for diesel engines. For a gas engine, this approach has been difficult to apply, as the piston and valvetrain lubrication becomes insufficient.
Technical Paper

A Steady-State Based Investigation of Automotive Turbocharger Compressor Noise

2018-06-13
2018-01-1528
The challenging problem of noise generation and propagation in automotive turbocharging systems is of real interest from both scientific and practical points of view. Robust and fast steady-state fluid flow calculations, complemented by acoustic analogies can represent valuable tools to be used for a quick assessment of the problem during e.g. design phase, and a starting point for more in-depth future unsteady calculations. Thus, as a part of the initial phase of a long-term project, a steady-state Reynolds Averaged Navier-Stokes (RANS) flow analysis is carried out for a specific automotive turbocharger compressor geometry. Acoustic data are extracted by means of aeroacoustics models available within the framework of the STAR-CCM+ solver (i.e. Curle and Proudman acoustic analogies, respectively).
Technical Paper

A Comparison of On-Engine Surge Detection Algorithms using Knock Accelerometers

2017-10-08
2017-01-2420
On-engine surge detection could help in reducing the safety margin towards surge, thus allowing higher boost pressures and ultimately low-end torque. In this paper, experimental data from a truck turbocharger compressor mounted on the engine is investigated. A short period of compressor surge is provoked through a sudden, large drop in engine load. The compressor housing is equipped with knock accelerometers. Different signal treatments are evaluated for their suitability with respect to on-engine surge detection: the signal root mean square, the power spectral density in the surge frequency band, the recently proposed Hurst exponent, and a closely related concept optimized to detect changes in the underlying scaling behavior of the signal. For validation purposes, a judgement by the test cell operator by visual observation of the air filter vibrations and audible noises, as well as inlet temperature increase, are also used to diagnose surge.
X