Refine Your Search

Topic

Author

Search Results

Technical Paper

Cyber Security Approval Criteria: Application of UN R155

2024-07-02
2024-01-2983
The UN R155 regulation is the first automotive cyber security regulation and has made security a mandatory approval criterion for new vehicle types. This establishes internationally harmonized security requirements for market approval. As a result, the application of the regulation presents manufacturers and suppliers with the challenge of demonstrating compliance. At process level the implementation of a Cyber Security Management System (CSMS) is required while at product level, the Threat Assessment and Risk Analysis (TARA) forms the basis to identify relevant threats and corresponding mitigation strategies. Overall, an issued type approval is internationally recognized by the member states of the UN 1958 Agreement. International recognition implies that uniform assessment criteria are applied to demonstrate compliance and to decide whether security efforts are sufficient.
Technical Paper

Frequency-based substructuring for virtual prediction and uncertainty quantification of thin-walled vehicle seat structures

2024-06-12
2024-01-2946
Finite element simulation (FE) makes it possible to analyze the structural dynamic behavior of vehicle seat structures in early design phases to meet Noise-Vibration-Harshness (NVH) requirements. For this purpose, linear simulations are usually used, which neglect many nonlinear mechanical properties of the real structure. These models are trimmed to fit global vibration behavior based on the complex description of contact or jointed definitions. Targeted design is therefore only possible to a limited extent. The aim of this work is to characterize the entire seat structure and its sub-components in order to identify the main contributors using experimental and simulative data. The Lagrange Multiplier Frequency Based Substructuring (LM-FBS) method is used for this purpose. Therefore, the individual subsystems of seat frame, seat backrest and headrest are characterized under different conditions.
Technical Paper

Mixture Formation and Corresponding Knock Limits in a Hydrogen Direct Injection Engine Using Different Jet Forming Caps

2024-04-09
2024-01-2113
The need for carbon-neutral transportation solutions has never been more pronounced. With the continually expanding volume of goods in transit, innovative and dependable powertrain concepts for freight transport are imperative. The green hydrogen-powered internal combustion engine presents an appealing option for integrating a reliable, non-fossil fuel powertrain into commercial vehicles. This study focuses on the adaptation of a single-cylinder diesel engine with a displacement of 2116 cm3 to facilitate hydrogen combustion. The engine, characterized by low levels of swirl and tumble, underwent modifications, including the integration of a conventional central spark plug, a custom-designed piston featuring a reduced compression ratio of 9.5, and a low-pressure hydrogen direct injection system. Operating the injection system at 25 bar hydrogen pressure, the resulting jet profiles were varied by employing jet forming caps affixed directly to the injector nozzle.
Technical Paper

Distribution of Cooling Structures in Water Cooled Electrical Machines Using Localized Loss Profiles

2023-08-28
2023-24-0126
Cooling is a critical factor for improving power density in electrical appliances, especially in integrated drives for mobile applications. However, the issue of distributed losses in electric machines can lead to hotspots and temperature gradients within the electric drive. Traditional cooling jackets use unidirectional flow without or with evenly distributed cooling structures. This often aggravates the issue of hotspots, resulting in thermal derating and thus limiting the operation range. As well, a non-demand oriented distribution of cooling structures leads to unnecessary pressure losses. This problem is addressed with a newly elaborated method for distributing cooling elements, i.e., pin fins with varying density distribution inside the cooling channel. Results from previous work, numerical simulations, and measurement data from a planar test bench are used. The approach segments the cooling channel by using a loss profile.
Journal Article

Variational Autoencoders for Dimensionality Reduction of Automotive Vibroacoustic Models

2022-06-15
2022-01-0941
In order to predict reality as accurately as possible leads to the fact that numerical models in automotive vibroacoustic problems become increasingly high dimensional. This makes applications with a large number of model evaluations, e.g. optimization tasks or uncertainty quantification hard to solve, as they become computationally very expensive. Engineers are thus faced with the challenge of making decisions based on a limited number of model evaluations, which increases the need for data-efficient methods and reduced order models. In this contribution, variational autoencoders (VAEs) are used to reduce the dimensionality of the vibroacoustic model of a vehicle body and to find a low-dimensional latent representation of the system.
Technical Paper

Impact of the Injection Strategy on Soot Reactivity and Particle Properties of a GDI Engine

2020-04-14
2020-01-0392
The gradual global tightening of emission legislation for particulate matter emissions requires the development of new gasoline engine exhaust aftertreatment systems. For this reason, the development of gasoline direct injection engines aims at the reduction of particulate emissions by application of a Gasoline Particulate Filter (GPF). The regeneration temperature of GPF depend on soot reactivity towards oxidation and therefore on particle properties. In this study, the soot reactivity is correlated with nanostructural characteristics of primary gasoline particles as a function of specific engine injection parameters. The investigations on particle emissions were carried out on a turbocharged 4-cylinder GDI-engine that allows the variation of injection parameters. The emitted engine soot particles have been in-situ characterized towards their number and size distribution using an engine exhaust particle sizer (EEPS).
Technical Paper

Motion Cueing Algorithm for a 9 DoF Driving Simulator: MPC with Linearized Actuator Constraints

2018-04-03
2018-01-0570
In times when automated driving is becoming increasingly relevant, dynamic simulators present an appropriate simulation environment to faithfully reproduce driving scenarios. A realistic replication of driving dynamics is an important criterion to immerse persons in the virtual environments provided by the simulator. Motion Cueing Algorithms (MCAs) compute the simulator’s control input, based on the motions of the simulated vehicle. The technical restrictions of the simulator’s actuators form the main limitation in the execution of these input commands. Typical dynamic simulators consist of a hexapod with six degrees of freedom (DoF) to reproduce the vehicle motion in all dimensions. Since its workspace dimensions are limited, significant improvements in motion capabilities can be achieved by expanding the simulator with redundant DoF by means of additional actuators.
Technical Paper

Conceptualization and Implementation of a Scalable Powertrain, Modular Energy Storage and an Alternative Cooling System on a Student Concept Vehicle

2018-04-03
2018-01-1185
The Deep Orange program immerses automotive engineering students into the world of an OEM as part of their 2-year graduate education. In support of developing the program’s seventh vehicle concept, the students studied the sponsoring brand essence, conducted market research, and made a heuristic assessment of competitor vehicles. The upfront research lead to the definition of target customers and setting vehicle level targets that were broken down into requirements to develop various vehicle sub-systems. The powertrain team was challenged to develop a scalable propulsion concept enabled by a common vehicle architecture that allowed future customers to select (at the point of purchase) among various levels of electrification best suiting their needs and personal desires. Four different configurations were identified and developed: all-electric, two plug-in hybrid electric configurations, and an internal combustion engine only.
Technical Paper

Designing Sound for Quiet Cars

2016-06-15
2016-01-1839
The quiet nature of hybrid and electric vehicles has triggered developments in research, vehicle manufacturing and legal requirements. Currently, three countries require fitting an Approaching Vehicle Alerting System (AVAS) to every new car capable of driving without a combustion engine. Various other geographical areas and groups are in the process of specifying new legal requirements. In this paper, the design challenges in the on-going process of designing the sound for quiet cars are discussed. A proposal is issued on how to achieve the optimum combination of safety, environmental noise, subjective sound character and technical realisation in an iterative sound design process. The proposed sound consists of two layers: the first layer contains tonal components with their pitch rising along with vehicle speed in order to ensure recognisability and an indication of speed.
Journal Article

Thermodynamic and Optical Investigations on Particle Emissions in a DISI Engine at Boosted Operation

2015-09-01
2015-01-1888
The subject of this paper is the reduction of the particle number emissions of a gasoline DI engine at high engine load (1.4 MPa IMEP). To reduce the particle number emissions, several parameters are investigated: the large scale charge motion (baseline configuration, tumble and swirl) can be varied at the single cylinder engine by using inlays in the intake port. The amount of residual gas can be influenced by the exhaust backpressure. By using a throttle valve, the exhaust backpressure can be set equal to the intake pressure and hence simulate a turbocharger's turbine in the exhaust system or the throttle valve can be wide open and thus simulate an engine using a supercharger. Additionally, higher fuel injection pressure can help to enhance mixture formation and thus decrease particulate formation. Therefore, a solenoid injector with a maximum pressure of 30 MPa is used in this work.
Journal Article

Experimental Investigations of a DISI Engine in Transient Operation with Regard to Particle and Gaseous Engine-out Emissions

2015-09-01
2015-01-1990
The investigation of transient engine operation plays a key role of the future challenges for individual mobility in terms of real driving emissions (RDE). A fundamental investigation of the transient engine operation requires the simultaneous application of measurement technologies for an integrated study of mixture formation, combustion process and emission formation. The major prerequisite is the combustion cycle and crank angle resolved analysis of the process for at least several individual consecutive combustion cycles during transient operation. The investigations are performed with a multi cylinder DISI engine at an Engine-in-the-Loop test bench, able to operate the engine in driving cycles as well as within target profiles (e.g. speed and torque profiles). The research project describes the methodology of analyzing elementary transient operational phases, (e.g. different variants of load steps).
Technical Paper

Approach for Parameter Determination for Objective Comfort Evaluation of the Vehicle Vibration Induced by Powertrain

2014-06-30
2014-01-2065
The driving comfort influences the customer purchase decision; hence it is an important aspect for the vehicle development. To better quantify the comfort level and reduce the experiment costs in the development process, the subjective comfort assessment by test drivers is nowadays more and more replaced by the objective comfort evaluation. Hereby the vibration comfort is described by scalar objective characteristic parameters that correlate with the subjective assessments. The correlation analysis requires the assessments and measurements at different vehicle vibration. To determine the objective parameters regarding the powertrain excitations, most experiments in the previous studies were carried out in several test vehicles with different powertrain units.
Journal Article

Managing Functional Safety Processes for Automotive E/E Architectures in Integrated Model-Based Development Environments

2014-04-01
2014-01-0208
The international standard ISO 26262 for functional safety of road vehicles claims processes and requirements for the entire product lifecycle of automotive electric and electronic systems. The demanded activities and work products within the standard are highly interconnected. Additionally, references to exemplarily external quality management standards or commonly recognized industry sources are given. Therefore, the application of functional safety processes in distributed development is challenging regarding description, understanding, analysis and planning of processes. To overcome these inconveniences, we provide a meta model extension for model-based architecture description languages regarding process description, organizational structures and resource assignment. This is related to the established “Business Process Model and Notation” (BPMN) according to ISO/IEC 19510:2013.
Technical Paper

A Numerical Investigation of Dampening Dynamic Profiles for the Application in Transient Vehicle Thermal Management Simulations

2014-04-01
2014-01-0642
As computational methodologies become more integrated into industrial vehicle pre-development processes the potential for high transient vehicle thermal simulations is evident. This can also been seen in conjunction with the strong rise in computing power, which ultimately has supported many automotive manufactures in attempting non-steady simulation conditions. The following investigation aims at exploring an efficient means of utilizing the new rise in computing resources by resolving high time-dependent boundary conditions through a series of averaging methodologies. Through understanding the sensitivities associated with dynamic component temperature changes, optimised boundary conditions can be implemented to dampen irrelevant input frequencies whilst maintaining thermally critical velocity gradients.
Journal Article

An Innovative Approach to Race Track Simulations for Vehicle Thermal Management

2013-11-20
2013-01-9121
Within the pre-development phase of a vehicle validation process, the role of computational simulation is becoming increasingly prominent in efforts to ensure thermal safety. This gain in popularity has resulted from the cost and time advantages that simulation has compared to experimental testing. Additionally many of these early concepts cannot be validated through experimental means due to the lack of hardware, and must be evaluated via numerical methods. The Race Track Simulation (RTS) can be considered as the final frontier for vehicle thermal management techniques, and to date no coherent method has been published which provides an efficient means of numerically modeling the temperature behavior of components without the dependency on statistical experimental data.
Technical Paper

Regenerative Braking Systems for Electric Driven Vehicles: Potential Analysis and Concept of an Adaptive System

2013-09-30
2013-01-2065
Electric driven Vehicles (EV) can help reduce CO2 emissions caused by traffic. High acquisition costs and the limited driving range of electric vehicles are their major drawbacks. In the last few years many efforts in research have been made to increase the usability of EV's. A Battery Electric Vehicle (BEV) consists mainly of an electric motor and a battery. Both components allow regenerative braking, where kinetic energy can be transformed back to electric energy and stored in the battery during braking. Several types of Regenerative Braking Systems (RBS) already exist. These systems differentiate from each other by the concepts and strategies used, and therefore have different potential to increase the driving range of electric driven vehicles. Furthermore, the potential depends on the actual traffic situation and the actual state of the vehicle components.
Technical Paper

A Combined Computational-Experimental Approach for Modelling of Coupled Vibro-Acoustic Problems

2013-05-13
2013-01-1997
Over the past 30 years, the computer-aided engineering (CAE) tools have been applied extensively in the automotive industry. In order to accelerate time-to-market while coping with legal limits that have become increasingly restrictive over the last decades, CAE has become an indispensable tool covering all major fields in a modern automotive product design process. However, when tackling complex real-life engineering problems, the computational models might become rather involved and thus less efficient. Therefore, the overall trend in the automotive industry is currently heading towards combined approaches, which allow the best of the both worlds, namely the experimental measurement and numerical simulation, to be merged into one integrated scheme. In this paper, the so-called patch transfer function (PTF) approach is adopted to solve coupled vibro-acoustic problems. In the PTF scheme, the interfaces between fluid and structure are discretised in terms of patches.
Journal Article

Performing Safety Evaluation on Detailed Hardware Level according to ISO 26262

2013-04-08
2013-01-0182
Electronic design on detailed hardware level for automotive safety-related systems requires evaluation of the hardware architecture to cope with random hardware failures. The international standard ISO 26262 - functional safety for road vehicles - claims two methods: hardware architectural metrics and evaluation of safety goal violations as a probabilistic approach. Although the utilization of these analyses is required, annotations of failure data in combination with performing evaluation of a preliminary hardware architecture using deposited failure data is not supported in an integrated model-based development environment. To overcome these inconveniences, we analyzed the ISO 26262, in particular Part 5 for product development at the hardware level, to provide both, meta-model for failure description of detailed hardware and performing evaluation of the hardware architecture. This UML-compliant meta-model expands existing EAST-ADL2 constructs.
Technical Paper

Model Coupling with a Function-Based Modular Framework for Entire-System Simulation

2013-04-08
2013-01-0643
This paper presents the further development, implementation and evaluation of a computer-aided engineering (CAE) method for tool-independent simulation model coupling with a function-based modular framework for entire-system simulations. For that purpose, the preliminary findings regarding the development process of the function-based modular framework are presented. Emanating from that, a hierarchical structure for consistent data distribution and deposition for separating the system to be simulated is introduced. Therein the boundaries of the subsystems are defined, to avoid overlapping and ensuring a consistent ratio of the subsystems. Thus, the exchangeability and the reuse of simulation models are supported. Additionally, a scheme for signal names of the subsystems interfaces is described to allow general interoperability between the subsystems within the function-based modular framework.
Journal Article

Psychoacoustic Requirements for Warning Sounds of Quiet Cars

2012-06-13
2012-01-1522
According to upcoming legislative regulations in certain countries, electric and hybrid-electric vehicles (EVs and HEVs) will have to be equipped with devices to compensate for the lack of engine noise needed to warn pedestrians against the vehicles. This leads to the question of appropriate sound design which has to meet specific psychoacoustic requirements. The present paper focuses on auditory features of warning sounds to enhance pedestrians' safety with a major focus on the detectability of the exterior noise of the vehicle in an ambient noise. For the evaluation of detectability, the psychoacoustic model developed by Kerber and Fastl will be introduced allowing for the prediction of masked thresholds of the approaching vehicle. The instrumental assessment yields estimates of the distance of an approaching vehicle at the point it becomes audible to the pedestrians.
X