Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Cyber Security Approval Criteria: Application of UN R155

2024-07-02
2024-01-2983
The UN R155 regulation is the first automotive cyber security regulation and has made security a mandatory approval criterion for new vehicle types. This establishes internationally harmonized security requirements for market approval. As a result, the application of the regulation presents manufacturers and suppliers with the challenge of demonstrating compliance. At process level the implementation of a Cyber Security Management System (CSMS) is required while at product level, the Threat Assessment and Risk Analysis (TARA) forms the basis to identify relevant threats and corresponding mitigation strategies. Overall, an issued type approval is internationally recognized by the member states of the UN 1958 Agreement. International recognition implies that uniform assessment criteria are applied to demonstrate compliance and to decide whether security efforts are sufficient.
Technical Paper

Automated AI-based Annotation Framework for 3D Object Detection from LIDAR Data in Industrial Areas.

2024-07-02
2024-01-2999
Autonomous Driving is being utilized in various settings, including indoor areas such as industrial halls. Additionally, LIDAR sensors are currently popular due to their superior spatial resolution and accuracy compared to RADAR, as well as their robustness to varying lighting conditions compared to cameras. They enable precise and real-time perception of the surrounding environment. Several datasets for on-road scenarios such as KITTI or Waymo are publicly available. However, there is a notable lack of open-source datasets specifically designed for industrial hall scenarios, particularly for 3D LIDAR data. Furthermore, for industrial areas where vehicle platforms with omnidirectional drive are often used, 360° FOV LIDAR sensors are necessary to monitor all critical objects. Although high-resolution sensors would be optimal, mechanical LIDAR sensors with 360° FOV exhibit a significant price increase with increasing resolution.
Technical Paper

Optimization of Laminated Stack Solutions for Electric Motors in Electrified Vehicles

2024-04-09
2024-01-2214
The electrification of vehicles marks the introduction of new products to the automotive market and a continued effort to optimize their performance. The electric motor is an important component with which a further optimization of efficiency, power density and cost can be achieved. Additional benefits can be realized in the laminated core. This paper presents an innovative method to produce laminated stacks by a chain of processes different from conventional ways. The process chain presents a sequence of precision blanking, buffering, heat treatment and gluing. The effect of these processes is compared with existing solutions that typically contain some individual features but usually not the combination that enhances the overall effect. The heat treatment decreases residual stresses from previous process steps and reduces power losses in the laminated core. Depending on the design, benefits around 20% are found.
Technical Paper

Demonstration of Low Criteria Pollutant and Greenhouse Gas Emissions: Synergizing Vehicle Emission Reduction Technology and Lower Carbon Fuels

2024-04-09
2024-01-2121
This study focuses on evaluation of various fuels within a conventional gasoline internal combustion engine (ICE) vehicle and the implementation of advanced emissions reduction technology. It shows the robustness of the implemented technology packages for achieving ultra-low tailpipe emissions to different market fuels and demonstrates the potential of future GHG neutral powertrains enabled by drop-in lower carbon fuels (LCF). An ultra-low emission (ULE) sedan vehicle was set up using state-of-the-art engine technology, with advanced vehicle control and exhaust gas aftertreatment system including a prototype rapid catalyst heating (RCH) unit. Currently regulated criteria pollutant emission species were measured at both engine-out and tailpipe locations. Vehicle was run on three different drive cycles at the chassis dynamometer: two standard cycles (WLTC and TfL) at 20°C, and a real driving emission (RDE) cycle at -7°C.
Technical Paper

TAF-BW - Real Laboratory as Enabler for Autonomous Driving

2023-12-29
2023-01-1909
Given the rapid advancement of connected and automated transportation, its applications have significantly increased. They are being studied worldwide to shape the future of mobility. Key promises are a more comfortable, efficient and socially adapted kind of mobility. As part of the EU Horizon2020 project SHared automation Operating models for Worldwide adoption (SHOW), the Karlsruhe Test Site in the Test Area Autonomous Driving Baden-Württemberg (TAF-BW) addresses aspects of scalability to overcome challenges, which have so far hindered market penetration of this future-oriented kind of mobility. The explored services, including passenger and cargo transport, are closely linked to the daily travel requirements of road users, particularly in peri-urban areas, to cover the last mile of their journeys, connecting them to public transport.
Technical Paper

Distribution of Cooling Structures in Water Cooled Electrical Machines Using Localized Loss Profiles

2023-08-28
2023-24-0126
Cooling is a critical factor for improving power density in electrical appliances, especially in integrated drives for mobile applications. However, the issue of distributed losses in electric machines can lead to hotspots and temperature gradients within the electric drive. Traditional cooling jackets use unidirectional flow without or with evenly distributed cooling structures. This often aggravates the issue of hotspots, resulting in thermal derating and thus limiting the operation range. As well, a non-demand oriented distribution of cooling structures leads to unnecessary pressure losses. This problem is addressed with a newly elaborated method for distributing cooling elements, i.e., pin fins with varying density distribution inside the cooling channel. Results from previous work, numerical simulations, and measurement data from a planar test bench are used. The approach segments the cooling channel by using a loss profile.
Technical Paper

Decoupling Effects in Wet-Running Multi Plate Clutches – Extended and Efficient Use in Hybrid Drive Trains

2023-08-28
2023-24-0179
The functional extension of vibration reduction in continuous slip operation in modern wet-running clutch systems under dynamic excitation is being investigated by the authors. Therefore, a mixed virtual-physical validation environment has been developed using the IPEK X-in-the-Loop Framework and will be presented as part of this contribution. Thus, the validation environment enables the consideration of interactions with the residual systems, especially the residual drive train. In this contribution, the validation environment is used to investigate whether and how an attribute variation in the subsystem, respectively the tribological system, can provide improved vibration reduction without increased power dissipation due to damping but other reducing mechanisms favored. The results show significant differences in vibration reduction behavior whereas the power losses are almost the same between the investigated tribological system.
Technical Paper

Battery Electric Vehicle-in-the-Loop Power and Efficiency Measurement Test Method

2023-08-28
2023-24-0182
The increasing adoption of battery electric vehicles (BEVs), driven by the EU's target of no internal combustion engine vehicles from 2035 onwards, is driving significant changes in the automotive industry. However, the high degree of electrification and the unique low-speed acceleration behavior of BEVs therefore lead to new challenges. Measuring the drivetrain power and efficiency in a reproducible way and obtaining meaningful results is one of the challenges. To address this challenge, a novel test method is developed that offers a simple and preferably modification-free approach to drivetrain power and efficiency measurements for BEVs, allowing for efficient and reproducible testing. Different paths for determining the drivetrain power with varied measurement efforts are presented and evaluated. The test method is designed to provide reliable and accurate results for BEVs.
Technical Paper

3DCFD-Modeling of a Hydrogen Combustion-Process with Regard to Simulation Stability and Emissions

2023-06-26
2023-01-1209
In the context of the energy transition, CO2-neutral solutions are of enormous importance for all sectors, but especially for the mobility sector. Hydrogen as an energy carrier has therefore been the focus of research and development for some time. However, the development of hydrogen combustion engines is in many respects still in the conception phase. Automotive system providers and engineering companies in the field of software development and simulation are showing great interest in the topic. In a joint project with the industrial partners Robert Bosch GmbH and AVL Germany, combustion in a H2-DI-engine for use in light-duty vehicles was methodically investigated using the CFD tool AVL FIRE®. The collaboration between Robert Bosch GmbH and the Institute for Mobile Systems (IMS) at Otto von Guericke University Magdeburg has produced a model study in which model approaches for the combustion of hydrogen can be analyzed.
Technical Paper

Generic X-Domain Hazard Analysis and Risk Assessment

2023-04-11
2023-01-0580
X-Domain describes the merging of different domains (i.e., braking, steering, propulsion, suspension) into single functionalities. One example in this context is torque-vectoring. Different goals can be pursued by applying X-Domain features. On the one hand, savings in fuel consumption and an improved vehicle driving performance can be potentially accomplished. On the other hand, safety can be improved by taking over a failed or degraded functionality of one domain by other domains. The safety-aspect from the viewpoint of requirements is highlighted within this contribution. Every automotive system being developed and influencing the vehicle safety must fulfill certain safety objectives. These are top-level safety requirements (ISO 26262-1) specifying functionalities to avoid unreasonable risk. Every safety objective is associated with an Automotive Safety Integrity Level (ASIL) derived from a Hazard Analysis and Risk Assessment (HARA).
Technical Paper

GPS Coordinates Based Route Recognition and Predictive Functions

2022-10-05
2022-28-0124
Historically, whenever the automotive solutions’ state of art reaches a saturation level, the integration of new verticals of technology has always raised new opportunities to innovate, enhance and optimize automotive solutions. The predictive powertrain solutions using connectivity elements (e.g., navigation unit, e-Horizon or cloud-based services) are one of such areas of huge interest in automotive industry. The prior knowledge of trip destination and its route characteristics has potential to make prediction of powertrain modes or events in certain order and therefore it can add value in various application areas such as optimized energy management, lower fuel consumption, superior safety and comfort, etc.
Journal Article

Concept Design of a Parking Brake Module for Standstill Management and Wheel Individual Brake Torque Generation for EVs with Unconventional Service Brake Topology

2022-09-19
2022-01-1186
For electric vehicles the ability for regenerative braking reduces the use of friction brakes. Particularly on the rear axle of vehicles with reduced dynamic requirements such as urban vehicles, this can offer a potential for downsizing or, in extreme cases, even the elimination of the friction brakes on the rear axle. Due to the fact that the rear axle service brakes also represent the typical parking brake location in SoA (State-of-Art) vehicles, a rigorous rethinking of the parking brake concept is necessary to incorporate safe vehicle standstill management for such novel brake system topology. This research study introduces a novel parking brake design that covers SoA but also legal requirements while retaining potentials associated with the elimination of the rear service brakes such as cost and packaging.
Journal Article

Hot Surface Assisted Compression Ignition (HSACI) as an Approach to Extend the Operating Limits of a Natural Gas Fueled HCCI Engine

2022-01-09
2022-32-0027
The concept of hot surface assisted compression ignition (HSACI) was previously shown to allow for control of combustion timing and to enable combustion beyond the limits of pure homogeneous charge compression ignition (HCCI) combustion. This work investigates the potential of HSACI to extend the operating limits of a naturally aspirated single-cylinder natural gas fueled HCCI engine. A zero-dimensional (0D) thermo-kinetic modeling framework was set up and coupled with the chemical reaction mechanism AramcoMech 1.3. The results of the 0D study show that reasonable ignition timings in the range 0-12°CA after top dead center (TDC) in HCCI can be expressed by constant volume ignition delays at TDC conditions of 9-15°CA. Simulations featuring the two-stage combustion in HSACI point out the capability of the initial heat release as a means to shorten bulk-gas ignition delay.
Technical Paper

Towards Establishing Continuous-X Pipeline Using Modular Software-in-the-Loop Test Environments

2021-09-22
2021-26-0412
Software-in-the-Loop (SiL) test environments are the ideal virtual platforms for enabling continuous-development, -integration, -testing -delivery or -deployment commonly referred as Continuous-X (CX) of the complex functionalities in the current automotive industry. This trend especially is contributed by several factors such as the industry wide standardization of the model exchange formats, interfaces as well as architecture definitions. The approach of frontloading software testing with SiL test environments is predominantly advocated as well as already adopted by various Automotive OEMs, thereby the demand for innovating applicable methods is increasing. However, prominent usage of the existing monolithic architecture for interaction of various elements in the SiL environment, without regarding the separation between functional and non-functional test scope, is reducing the usability and thus limiting significantly the cost saving potential of CX with SiL.
Technical Paper

Prediction of Internal Responses Due to Changes in Boundary Conditions Using System Frequency Response Functions

2021-08-31
2021-01-1058
Vibration testing is often carried out for automotive components to meet guidelines based on their operational environments. This is an iterative process wherein design changes may need to be made depending on an intermediate model’s dynamic behavior. Predicting the behavior based on modifications in boundary conditions of a well-defined numerical model imparts practical insights to the component’s responses. To this end, application of a general method using experimental free-free condition frequency response functions of a structure is discussed in the presented work. The procedure is shown to be useful for prediction of responses when kinematic boundary conditions are applied, without the need for an actual measurement. This approach is outlined in the paper and is applied to datasets where dynamic modifications are made at multiple boundary nodes.
Technical Paper

Suspension Optimization Based on Evolutionary Algorithms for Four-Wheel Drive and Four-Wheel Steered Vehicles

2021-04-06
2021-01-0933
A gray-box optimization procedure based on evolutionary algorithms for the initial design of a suspension concept for four wheel independently driven and steered vehicles is developed. With the presented optimization method, the energy consumption together with state of the art knowledge about the parametrization and design of vehicle suspension systems leads to an optimization setup closely to real world requirements while the vehicle’s topology is exploited. To this, the modelling presented in [1] is considered as a geometric suspension model. Furthermore, to take advantage of the potential of such vehicles, an autonomous closed-loop setup with integrated motion control is utilized. During the optimization, the chassis parameters with the most impact on energy consumption and driving dynamics, namely camber, caster, scrub radius and the steering axis inclination (SAI) depending on a varying caster angle and SAI in relation to the steering angle, will be focused.
Technical Paper

Fuel Consumption Modelling of a TFSI Gasoline Engine with Embedded Prior Knowledge

2021-04-06
2021-01-0633
As an important means of engine development and optimization, modelbuilding plays an increasingly important role in reducing carbon dioxide emissions of the internal combustion engines (ICEs). However, due to the non-linearity and high dimension of the engine system, a large amount of data is required to obtain high model accuracy. Therefore, a modelling approach combining the experimental data and prior knowledge was proposed in this study. With this method, an artificial neural network (ANN) model simulating the engine brake specific fuel consumption (BSFC) was established. With mean square error (MSE) and Kullback-Leibler divergence (KLD) serving as the fitness functions, the 86 experimental samples and constructed physical models were used to optimize the ANN weights through genetic algorithms.
Technical Paper

Dualhybrid-Cold Start Performance Study for a HEV with Two Combustion Engines

2021-04-06
2021-01-0396
The fuel economic and emission performance of an innovative electric hybrid vehicle (HEV), Dualhybrid, with two internal combustion engines (ICEs) under cold start conditions was studied. Sub-models including powertrain, lubrication and cooling system as well as exhaust system were built and integrated into the models of Dualhybrid and two other reference models: Base model and Fullhybrid model. Coupled lubrication and the exhaust systems of the two ICEs are proposed. The effect of the combination of oil heating and electric heating on the fuel consumption of Dualhybrid was investigated. The results show that the coupled lubricating system of Dualhybrid is beneficial to improve the fuel economy in cold start. The method of hybrid heating can provide a sufficient heating power of the cabin in the initial stage of cold start without declining the fuel economic performance significantly.
Technical Paper

Generic Methodology for Vibration and Wear Analysis to Understand Their Influences in an Electric Drivetrain

2020-09-30
2020-01-1506
The prime factor which influences noise and vibrations of electro-mechanical drives is wear at the components. This paper discusses the numerical methods developed for abrasion, vibration calculations and the coupling between wear and Noise Vibration and Harshness (NVH) models of the drive unit. The vibration domain model, initially, focuses on the calculations of mechanical excitations at the gear shafts which are generated via a nonlinear dynamic model. Furthermore, the bearings are studied for the influences on their stiffness and eventually their impact on the harmonics of the drivetrain. Later, free and forced vibrations of the complete drivetrain are simulated via a steady-state dynamic model. Consequently, the paper concentrates on the abrasion calculations at the gears. Wear is a complex process and understanding it is essential for determining the vibro-acoustics characteristics.
Technical Paper

Large Eddy Simulations and Tracer-LIF Diagnostics of Wall Film Dynamics in an Optically Accessible GDI Research Engine

2019-09-09
2019-24-0131
Large Eddy Simulations (LES) and tracer-based Laser-Induced Fluorescence (LIF) measurements were performed to study the dynamics of fuel wall-films on the piston top of an optically accessible, four-valve pent-roof GDI research engine for a total of eight operating conditions. Starting from a reference point, the systematic variations include changes in engine speed (600; 1,200 and 2,000 RPM) and load (1000 and 500 mbar intake pressure); concerning the fuel path the Start Of Injection (SOI=360°, 390° and 420° CA after gas exchange TDC) as well as the injection pressure (10, 20 and 35 MPa) were varied. For each condition, 40 experimental images were acquired phase-locked at 10° CA intervals after SOI, showing the wall-film dynamics in terms of spatial extent, thickness and temperature.
X