Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Cyber Security Approval Criteria: Application of UN R155

2024-07-02
2024-01-2983
The UN R155 regulation is the first automotive cyber security regulation and has made security a mandatory approval criterion for new vehicle types. This establishes internationally harmonized security requirements for market approval. As a result, the application of the regulation presents manufacturers and suppliers with the challenge of demonstrating compliance. At process level the implementation of a Cyber Security Management System (CSMS) is required while at product level, the Threat Assessment and Risk Analysis (TARA) forms the basis to identify relevant threats and corresponding mitigation strategies. Overall, an issued type approval is internationally recognized by the member states of the UN 1958 Agreement. International recognition implies that uniform assessment criteria are applied to demonstrate compliance and to decide whether security efforts are sufficient.
Technical Paper

Automated AI-based Annotation Framework for 3D Object Detection from LIDAR Data in Industrial Areas.

2024-07-02
2024-01-2999
Autonomous Driving is being utilized in various settings, including indoor areas such as industrial halls. Additionally, LIDAR sensors are currently popular due to their superior spatial resolution and accuracy compared to RADAR, as well as their robustness to varying lighting conditions compared to cameras. They enable precise and real-time perception of the surrounding environment. Several datasets for on-road scenarios such as KITTI or Waymo are publicly available. However, there is a notable lack of open-source datasets specifically designed for industrial hall scenarios, particularly for 3D LIDAR data. Furthermore, for industrial areas where vehicle platforms with omnidirectional drive are often used, 360° FOV LIDAR sensors are necessary to monitor all critical objects. Although high-resolution sensors would be optimal, mechanical LIDAR sensors with 360° FOV exhibit a significant price increase with increasing resolution.
Technical Paper

Trim-structure interface modelling and simulation approaches for FEM applications

2024-06-12
2024-01-2954
Trim materials are often used for vibroacoustic energy absorption purposes within vehicles. To estimate the sound impact at a driver’s ear, the substructuring approach can be applied. Thus, transfer functions are calculated starting from the acoustic source to the car body, from the car body to the trim and, finally, from the trim to the inner cavity where the driver is located. One of the most challenging parts is the calculation of the transfer functions from the car body inner surface to the bottom trim surface. Commonly, freely laying mass-spring systems (trims) are simulated with a fixed boundary and interface phenomena such as friction, stick-slip or discontinuities are not taken into consideration. Such an approach allows for faster simulations but results in simulations strongly overestimating the energy transfer, particularly in the frequency range where the mass-spring system’s resonances take place.
Technical Paper

Optimization of Laminated Stack Solutions for Electric Motors in Electrified Vehicles

2024-04-09
2024-01-2214
The electrification of vehicles marks the introduction of new products to the automotive market and a continued effort to optimize their performance. The electric motor is an important component with which a further optimization of efficiency, power density and cost can be achieved. Additional benefits can be realized in the laminated core. This paper presents an innovative method to produce laminated stacks by a chain of processes different from conventional ways. The process chain presents a sequence of precision blanking, buffering, heat treatment and gluing. The effect of these processes is compared with existing solutions that typically contain some individual features but usually not the combination that enhances the overall effect. The heat treatment decreases residual stresses from previous process steps and reduces power losses in the laminated core. Depending on the design, benefits around 20% are found.
Technical Paper

TAF-BW - Real Laboratory as Enabler for Autonomous Driving

2023-12-29
2023-01-1909
Given the rapid advancement of connected and automated transportation, its applications have significantly increased. They are being studied worldwide to shape the future of mobility. Key promises are a more comfortable, efficient and socially adapted kind of mobility. As part of the EU Horizon2020 project SHared automation Operating models for Worldwide adoption (SHOW), the Karlsruhe Test Site in the Test Area Autonomous Driving Baden-Württemberg (TAF-BW) addresses aspects of scalability to overcome challenges, which have so far hindered market penetration of this future-oriented kind of mobility. The explored services, including passenger and cargo transport, are closely linked to the daily travel requirements of road users, particularly in peri-urban areas, to cover the last mile of their journeys, connecting them to public transport.
Technical Paper

Leveraging Historical Thermal Wind Tunnel Data for ML-Based Predictions of Component Temperatures for a New Vehicle Project

2023-06-26
2023-01-1216
The thermal operational safety (TOS) of a vehicle ensures that no component exceeds its critical temperature during vehicle operation. To enhance the current TOS validation process, a data-driven approach is proposed to predict maximum component temperatures of a new vehicle project by leveraging the historical thermal wind tunnel data from previous vehicle projects. The approach intends to support engineers with temperature predictions in the early phase and reduce the number of wind tunnel tests in the late phase of the TOS validation process. In the early phase, all measurements of the new vehicle project are predicted. In the late phase, a percentage of measurements with the test vehicle used for the model training and the remaining tests are predicted with the trained ML model. In a first step, data from all wind tunnel tests is extracted into a joint dataset together with metadata about the vehicle and the executed load case.
Technical Paper

Concept for an Approval-Focused Over-The-Air Update Development Process

2023-06-26
2023-01-1224
The idea of keeping a vehicle safe and secure throughout its whole life cycle, as well as having the opportunity to add functionality after initial delivery, is the key motivation behind automotive software updates. Today, safety or security issues that appear after vehicle delivery need to be resolved by starting a recall campaign. These campaigns require the vehicle user to visit a car repair workshop to get an update. Over The Air (OTA) software updates, being location-independent, can pave the way for higher update frequencies and more efficiency regarding customer satisfaction, resource consumption as well as safety and security. In this paper we analyze requirements for OTA software updates phrased in various standards and regulations as well as in existing development and type approval processes. Prevailing challenges for OTA updates are extracted to identify necessary activities and artifacts within the procedure.
Technical Paper

Analysis of Current Challenges of Automotive Software in the View of Manufacturing

2023-06-26
2023-01-1221
The rapidly growing amount of software in cars reshapes the automotive industry. The software has a significant influence on the production lines, due to the time required to flash it onto the vehicle and its capabilities to test vehicle functions during production. In this paper we identify the main pain points regarding software in the manufacturing process by performing a structured analysis on the experiences made at a major car manufacturer over last two years. Consequently, the paper analyses the possible approaches to address the challenges.
Technical Paper

The Effect of Engine Parameters on In-Cylinder Pressure Reconstruction from Vibration Signals Based on a DNN Model in CNG-Diesel Dual-Fuel Engine

2023-04-11
2023-01-0861
In marine or stationary engines, consistent engine performance must be guaranteed for long-haul operations. A dual-fuel combustion strategy was used to reduce the emissions of particulates and nitrogen oxides in marine engines. However, in this case, the combustion stability was highly affected by environmental factors. To ensure consistent engine performance, the in-cylinder pressure measured by piezoelectric pressure sensors is generally measured to analyze combustion characteristics. However, the vulnerability to thermal drift and breakage of sensors leads to additional maintenance costs. Therefore, an indirect measurement via a reconstruction model of the in-cylinder pressure from engine block vibrations was developed. The in-cylinder pressure variation is directly related to the block vibration; however, numerous noise sources exist (such as, valve impact, piston slap, and air flowage).
Technical Paper

GPS Coordinates Based Route Recognition and Predictive Functions

2022-10-05
2022-28-0124
Historically, whenever the automotive solutions’ state of art reaches a saturation level, the integration of new verticals of technology has always raised new opportunities to innovate, enhance and optimize automotive solutions. The predictive powertrain solutions using connectivity elements (e.g., navigation unit, e-Horizon or cloud-based services) are one of such areas of huge interest in automotive industry. The prior knowledge of trip destination and its route characteristics has potential to make prediction of powertrain modes or events in certain order and therefore it can add value in various application areas such as optimized energy management, lower fuel consumption, superior safety and comfort, etc.
Journal Article

Concept Design of a Parking Brake Module for Standstill Management and Wheel Individual Brake Torque Generation for EVs with Unconventional Service Brake Topology

2022-09-19
2022-01-1186
For electric vehicles the ability for regenerative braking reduces the use of friction brakes. Particularly on the rear axle of vehicles with reduced dynamic requirements such as urban vehicles, this can offer a potential for downsizing or, in extreme cases, even the elimination of the friction brakes on the rear axle. Due to the fact that the rear axle service brakes also represent the typical parking brake location in SoA (State-of-Art) vehicles, a rigorous rethinking of the parking brake concept is necessary to incorporate safe vehicle standstill management for such novel brake system topology. This research study introduces a novel parking brake design that covers SoA but also legal requirements while retaining potentials associated with the elimination of the rear service brakes such as cost and packaging.
Technical Paper

Comparison of Methods Between an Acceleration-Based In-Situ and a New Hybrid In-Situ Blocked Force Determination

2022-06-15
2022-01-0979
The NVH-development cycle of vehicle components often requires a source characterization separated from the vehicle itself, which leads to the implementation of test bench setups. In the context of frequency based substructuring and transfer path analysis, a component can be characterized using Blocked Forces. The following paper provides a comparison of methods between an acceleration-based in-situ and a new hybrid in-situ Blocked Force determination, using measurements of an artificially excited electric power steering (EPS). Under real-life conditions on a test rig, the acceleration-based in-situ approach often shows limitations in the lower frequency range, due to relatively bad signal-to-noise ratio at the indicator sensors, while delivering accurate results in the higher spectrum. Due to considerable loads on components in operation, the stiffness of the test-rig cannot be decreased arbitrarily.
Journal Article

Variational Autoencoders for Dimensionality Reduction of Automotive Vibroacoustic Models

2022-06-15
2022-01-0941
In order to predict reality as accurately as possible leads to the fact that numerical models in automotive vibroacoustic problems become increasingly high dimensional. This makes applications with a large number of model evaluations, e.g. optimization tasks or uncertainty quantification hard to solve, as they become computationally very expensive. Engineers are thus faced with the challenge of making decisions based on a limited number of model evaluations, which increases the need for data-efficient methods and reduced order models. In this contribution, variational autoencoders (VAEs) are used to reduce the dimensionality of the vibroacoustic model of a vehicle body and to find a low-dimensional latent representation of the system.
Technical Paper

eFMI (FMI for Embedded Systems) in AUTOSAR for Next Generation Automotive Software Development

2021-09-22
2021-26-0048
Nowadays automobiles are getting smart and there is a growing need for the physical behavior to become part of its software. This behavior can be described in a compact form by differential equations obtained from modeling and simulation tools. In the offline simulation domain the Functional Mockup Interface (FMI) [3], a popular standard today supported by many tools, allows to integrate a model with solver (Co-Simulation FMU) into another simulation environment. These models cannot be directly integrated into embedded automotive software due to special restrictions with respect to hard real-time constraints and MISRA compliance. Another architectural restriction is organizing software components according to the AUTOSAR standard which is typically not supported by the physical modeling tools. On the other hand AUTOSAR generating tools do not have the required advanced symbolic and numerical features to process differential equations.
Technical Paper

Towards Establishing Continuous-X Pipeline Using Modular Software-in-the-Loop Test Environments

2021-09-22
2021-26-0412
Software-in-the-Loop (SiL) test environments are the ideal virtual platforms for enabling continuous-development, -integration, -testing -delivery or -deployment commonly referred as Continuous-X (CX) of the complex functionalities in the current automotive industry. This trend especially is contributed by several factors such as the industry wide standardization of the model exchange formats, interfaces as well as architecture definitions. The approach of frontloading software testing with SiL test environments is predominantly advocated as well as already adopted by various Automotive OEMs, thereby the demand for innovating applicable methods is increasing. However, prominent usage of the existing monolithic architecture for interaction of various elements in the SiL environment, without regarding the separation between functional and non-functional test scope, is reducing the usability and thus limiting significantly the cost saving potential of CX with SiL.
Journal Article

Estimation of Socio-Economic Loss due to Road Traffic Accidents in India

2021-09-22
2021-26-0012
India witnessed 151,113 road deaths in the year 2019 and this alarming number is due to increased urbanization, motorization and per capita income. India is home to the 2nd largest road network in the world and accounts for the highest number of road deaths globally. Curbing the menace of road accidents requires tactical road safety policies and their effective implementation. The meagre availability of factual data regarding socio-economic loss due to road accidents is proving to be a hindrance to the ideation and implementation of the policies. The Planning Commission estimated the social costs of road accidents to be 7.9 billion $ in 1999/2000 which was roughly 3% of the country’s GDP and this value was revised to 14.3 billion $ in 2011. Absence of data regarding the loss due to road accidents in the recent times, has been a motivating factor to estimate the socio economic loss due to accidents on Indian roads.
Technical Paper

Modelling of Engine Cooling System with a New Modelling Approach Based on Dynamic Neural Network

2021-04-06
2021-01-0203
Thermal management has always played a significant role in reducing emissions and improving the fuel efficiency of the internal combustion engines (ICEs). With a momentous influence on the thermal behavior of the engines, the cooling system has a considerable impact on ICE performance. In this scenario, a method based on artificial neural network (ANN) of the cooling system was proposed in this work. Specific modeling methods were adopted for the various operating conditions and flow circuits of the cooling system. To describe these varied dynamic characteristics, four ANN sub-models were established to simulate the system at different temperature stages. As a closed-loop system, the temperature of the cooling system can be regarded as a result of all the experienced operating points. Therefore, integral parameters describing the trajectory of the system were selected as the input of the ANNs.
Technical Paper

Fuel Consumption Modelling of a TFSI Gasoline Engine with Embedded Prior Knowledge

2021-04-06
2021-01-0633
As an important means of engine development and optimization, modelbuilding plays an increasingly important role in reducing carbon dioxide emissions of the internal combustion engines (ICEs). However, due to the non-linearity and high dimension of the engine system, a large amount of data is required to obtain high model accuracy. Therefore, a modelling approach combining the experimental data and prior knowledge was proposed in this study. With this method, an artificial neural network (ANN) model simulating the engine brake specific fuel consumption (BSFC) was established. With mean square error (MSE) and Kullback-Leibler divergence (KLD) serving as the fitness functions, the 86 experimental samples and constructed physical models were used to optimize the ANN weights through genetic algorithms.
Technical Paper

Dualhybrid-Cold Start Performance Study for a HEV with Two Combustion Engines

2021-04-06
2021-01-0396
The fuel economic and emission performance of an innovative electric hybrid vehicle (HEV), Dualhybrid, with two internal combustion engines (ICEs) under cold start conditions was studied. Sub-models including powertrain, lubrication and cooling system as well as exhaust system were built and integrated into the models of Dualhybrid and two other reference models: Base model and Fullhybrid model. Coupled lubrication and the exhaust systems of the two ICEs are proposed. The effect of the combination of oil heating and electric heating on the fuel consumption of Dualhybrid was investigated. The results show that the coupled lubricating system of Dualhybrid is beneficial to improve the fuel economy in cold start. The method of hybrid heating can provide a sufficient heating power of the cabin in the initial stage of cold start without declining the fuel economic performance significantly.
Technical Paper

Optical Measurement of Spark Deflection Inside a Pre-chamber for Spark-Ignition Engines

2020-10-14
2020-01-5096
The start of combustion in a spark-ignited engine is highly dependent upon the conditions between the two spark plug electrodes at ignition. In addition to the air-to-fuel ratio in this gap, the gas flow is seen as most critical. In a combustion engine with a standard spark plug that protrudes into the combustion chamber, this gas flow is mainly dependent upon the tumble, swirl, or squish that is developed by the cylinder head and the piston movement. However, the air movement in the pre-chamber depends on the orientation of the orifices towards the main combustion chamber (MCC). This implies a less complex manipulation of local velocity in the electrode gap. This paper focuses on the effect of different pre-chamber designs on spark deflection by the inflowing gas. Therefore, a test rig was developed using the spark plug thread in the cylinder head of a motored engine.
X