Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

The 3D-CFD Contribution to H2 Engine Development for CV and Off-Road Application

2024-07-02
2024-01-3017
The hydrogen engine is one of the promising technologies that enables carbon-neutral mobility, especially in heavy-duty on- or off-road applications. In this paper, a methodological procedure for the design of the combustion system of a hydrogen-fueled, direct injection spark ignited commercial vehicle engine is described. In a preliminary step, the ability of the commercial 3D computational fluid dynamics (CFD) code AVL FIRE classic to reproduce the characteristics of the gas jet, introduced into a quiescent environment by a dedicated H2 injector, is established. This is based on two parts: Temporal and numerical discretization sensitivity analyses ensure that the spatial and temporal resolution of the simulations is adequate, and comparisons to a comprehensive set of experiments demonstrate the accuracy of the simulations. The measurements used for this purpose rely on the well-known schlieren technique and use helium as a safe substitute for H2.
Technical Paper

Additively Manufactured Wheel Suspension System with Integrated Conductions and Optimized Structure

2024-07-02
2024-01-2973
Increasing urbanisation and the growing environmental awareness in society require new and innovative vehicle concepts. In the present work, the design freedoms of additive manufacturing (AM) are used to develop a front axle wheel suspension for a novel modular vehicle concept. The development of the suspension components is based on a new method using industry standard load cases for the strength design of the components. To design the chassis components, first the available installation space is determined and a suitable configuration of the chassis components is defined. Furthermore, numerical methods are used to identify component geometries that are suitable for the force flow. The optimisation setup is selected in a way that allows to integrate information, energy and material-carrying conductors into the suspension arms. The conductors even serve as load-bearing structures because of the matching design of the components.
Technical Paper

Mixture Formation and Corresponding Knock Limits in a Hydrogen Direct Injection Engine Using Different Jet Forming Caps

2024-04-09
2024-01-2113
The need for carbon-neutral transportation solutions has never been more pronounced. With the continually expanding volume of goods in transit, innovative and dependable powertrain concepts for freight transport are imperative. The green hydrogen-powered internal combustion engine presents an appealing option for integrating a reliable, non-fossil fuel powertrain into commercial vehicles. This study focuses on the adaptation of a single-cylinder diesel engine with a displacement of 2116 cm3 to facilitate hydrogen combustion. The engine, characterized by low levels of swirl and tumble, underwent modifications, including the integration of a conventional central spark plug, a custom-designed piston featuring a reduced compression ratio of 9.5, and a low-pressure hydrogen direct injection system. Operating the injection system at 25 bar hydrogen pressure, the resulting jet profiles were varied by employing jet forming caps affixed directly to the injector nozzle.
Technical Paper

Demonstration of Low Criteria Pollutant and Greenhouse Gas Emissions: Synergizing Vehicle Emission Reduction Technology and Lower Carbon Fuels

2024-04-09
2024-01-2121
This study focuses on evaluation of various fuels within a conventional gasoline internal combustion engine (ICE) vehicle and the implementation of advanced emissions reduction technology. It shows the robustness of the implemented technology packages for achieving ultra-low tailpipe emissions to different market fuels and demonstrates the potential of future GHG neutral powertrains enabled by drop-in lower carbon fuels (LCF). An ultra-low emission (ULE) sedan vehicle was set up using state-of-the-art engine technology, with advanced vehicle control and exhaust gas aftertreatment system including a prototype rapid catalyst heating (RCH) unit. Currently regulated criteria pollutant emission species were measured at both engine-out and tailpipe locations. Vehicle was run on three different drive cycles at the chassis dynamometer: two standard cycles (WLTC and TfL) at 20°C, and a real driving emission (RDE) cycle at -7°C.
Technical Paper

3DCFD-Modeling of a Hydrogen Combustion-Process with Regard to Simulation Stability and Emissions

2023-06-26
2023-01-1209
In the context of the energy transition, CO2-neutral solutions are of enormous importance for all sectors, but especially for the mobility sector. Hydrogen as an energy carrier has therefore been the focus of research and development for some time. However, the development of hydrogen combustion engines is in many respects still in the conception phase. Automotive system providers and engineering companies in the field of software development and simulation are showing great interest in the topic. In a joint project with the industrial partners Robert Bosch GmbH and AVL Germany, combustion in a H2-DI-engine for use in light-duty vehicles was methodically investigated using the CFD tool AVL FIRE®. The collaboration between Robert Bosch GmbH and the Institute for Mobile Systems (IMS) at Otto von Guericke University Magdeburg has produced a model study in which model approaches for the combustion of hydrogen can be analyzed.
Technical Paper

Generic X-Domain Hazard Analysis and Risk Assessment

2023-04-11
2023-01-0580
X-Domain describes the merging of different domains (i.e., braking, steering, propulsion, suspension) into single functionalities. One example in this context is torque-vectoring. Different goals can be pursued by applying X-Domain features. On the one hand, savings in fuel consumption and an improved vehicle driving performance can be potentially accomplished. On the other hand, safety can be improved by taking over a failed or degraded functionality of one domain by other domains. The safety-aspect from the viewpoint of requirements is highlighted within this contribution. Every automotive system being developed and influencing the vehicle safety must fulfill certain safety objectives. These are top-level safety requirements (ISO 26262-1) specifying functionalities to avoid unreasonable risk. Every safety objective is associated with an Automotive Safety Integrity Level (ASIL) derived from a Hazard Analysis and Risk Assessment (HARA).
Technical Paper

The Effect of Engine Parameters on In-Cylinder Pressure Reconstruction from Vibration Signals Based on a DNN Model in CNG-Diesel Dual-Fuel Engine

2023-04-11
2023-01-0861
In marine or stationary engines, consistent engine performance must be guaranteed for long-haul operations. A dual-fuel combustion strategy was used to reduce the emissions of particulates and nitrogen oxides in marine engines. However, in this case, the combustion stability was highly affected by environmental factors. To ensure consistent engine performance, the in-cylinder pressure measured by piezoelectric pressure sensors is generally measured to analyze combustion characteristics. However, the vulnerability to thermal drift and breakage of sensors leads to additional maintenance costs. Therefore, an indirect measurement via a reconstruction model of the in-cylinder pressure from engine block vibrations was developed. The in-cylinder pressure variation is directly related to the block vibration; however, numerous noise sources exist (such as, valve impact, piston slap, and air flowage).
Technical Paper

GPS Coordinates Based Route Recognition and Predictive Functions

2022-10-05
2022-28-0124
Historically, whenever the automotive solutions’ state of art reaches a saturation level, the integration of new verticals of technology has always raised new opportunities to innovate, enhance and optimize automotive solutions. The predictive powertrain solutions using connectivity elements (e.g., navigation unit, e-Horizon or cloud-based services) are one of such areas of huge interest in automotive industry. The prior knowledge of trip destination and its route characteristics has potential to make prediction of powertrain modes or events in certain order and therefore it can add value in various application areas such as optimized energy management, lower fuel consumption, superior safety and comfort, etc.
Journal Article

Hot Surface Assisted Compression Ignition (HSACI) as an Approach to Extend the Operating Limits of a Natural Gas Fueled HCCI Engine

2022-01-09
2022-32-0027
The concept of hot surface assisted compression ignition (HSACI) was previously shown to allow for control of combustion timing and to enable combustion beyond the limits of pure homogeneous charge compression ignition (HCCI) combustion. This work investigates the potential of HSACI to extend the operating limits of a naturally aspirated single-cylinder natural gas fueled HCCI engine. A zero-dimensional (0D) thermo-kinetic modeling framework was set up and coupled with the chemical reaction mechanism AramcoMech 1.3. The results of the 0D study show that reasonable ignition timings in the range 0-12°CA after top dead center (TDC) in HCCI can be expressed by constant volume ignition delays at TDC conditions of 9-15°CA. Simulations featuring the two-stage combustion in HSACI point out the capability of the initial heat release as a means to shorten bulk-gas ignition delay.
Technical Paper

Suspension Optimization Based on Evolutionary Algorithms for Four-Wheel Drive and Four-Wheel Steered Vehicles

2021-04-06
2021-01-0933
A gray-box optimization procedure based on evolutionary algorithms for the initial design of a suspension concept for four wheel independently driven and steered vehicles is developed. With the presented optimization method, the energy consumption together with state of the art knowledge about the parametrization and design of vehicle suspension systems leads to an optimization setup closely to real world requirements while the vehicle’s topology is exploited. To this, the modelling presented in [1] is considered as a geometric suspension model. Furthermore, to take advantage of the potential of such vehicles, an autonomous closed-loop setup with integrated motion control is utilized. During the optimization, the chassis parameters with the most impact on energy consumption and driving dynamics, namely camber, caster, scrub radius and the steering axis inclination (SAI) depending on a varying caster angle and SAI in relation to the steering angle, will be focused.
Technical Paper

Fuel Consumption Modelling of a TFSI Gasoline Engine with Embedded Prior Knowledge

2021-04-06
2021-01-0633
As an important means of engine development and optimization, modelbuilding plays an increasingly important role in reducing carbon dioxide emissions of the internal combustion engines (ICEs). However, due to the non-linearity and high dimension of the engine system, a large amount of data is required to obtain high model accuracy. Therefore, a modelling approach combining the experimental data and prior knowledge was proposed in this study. With this method, an artificial neural network (ANN) model simulating the engine brake specific fuel consumption (BSFC) was established. With mean square error (MSE) and Kullback-Leibler divergence (KLD) serving as the fitness functions, the 86 experimental samples and constructed physical models were used to optimize the ANN weights through genetic algorithms.
Technical Paper

Dualhybrid-Cold Start Performance Study for a HEV with Two Combustion Engines

2021-04-06
2021-01-0396
The fuel economic and emission performance of an innovative electric hybrid vehicle (HEV), Dualhybrid, with two internal combustion engines (ICEs) under cold start conditions was studied. Sub-models including powertrain, lubrication and cooling system as well as exhaust system were built and integrated into the models of Dualhybrid and two other reference models: Base model and Fullhybrid model. Coupled lubrication and the exhaust systems of the two ICEs are proposed. The effect of the combination of oil heating and electric heating on the fuel consumption of Dualhybrid was investigated. The results show that the coupled lubricating system of Dualhybrid is beneficial to improve the fuel economy in cold start. The method of hybrid heating can provide a sufficient heating power of the cabin in the initial stage of cold start without declining the fuel economic performance significantly.
Technical Paper

Optical Measurement of Spark Deflection Inside a Pre-chamber for Spark-Ignition Engines

2020-10-14
2020-01-5096
The start of combustion in a spark-ignited engine is highly dependent upon the conditions between the two spark plug electrodes at ignition. In addition to the air-to-fuel ratio in this gap, the gas flow is seen as most critical. In a combustion engine with a standard spark plug that protrudes into the combustion chamber, this gas flow is mainly dependent upon the tumble, swirl, or squish that is developed by the cylinder head and the piston movement. However, the air movement in the pre-chamber depends on the orientation of the orifices towards the main combustion chamber (MCC). This implies a less complex manipulation of local velocity in the electrode gap. This paper focuses on the effect of different pre-chamber designs on spark deflection by the inflowing gas. Therefore, a test rig was developed using the spark plug thread in the cylinder head of a motored engine.
Technical Paper

Water Load Determination Approach in Two Wheeler Exhaust System

2018-10-30
2018-32-0075
Future emission norms in India (BS6) necessitates the 2 wheeler industry to work towards emission optimization measures. Engine operation at stoichiometric Air-Fuel Ratio (AFR) would result in a good performance, durability and least emissions. To keep the AFR close to stoichiometric condition, an Oxygen sensor is placed in the exhaust system, which detects if air-fuel mixture is rich (λ<1) or lean (λ>1) and provides feedback to fuel injection system for suitable fuel control. O2 sensor has a ceramic element, which needs to be heated to a working temperature for its functioning. The ceramic element would break (thermal shock) if water in liquid form comes in contact with it when the element is hot.
Technical Paper

Experimental Investigation of Flame-Wall-Impingement and Near-Wall Combustion on the Piston Temperature of a Diesel Engine Using Instantaneous Surface Temperature Measurements

2018-09-10
2018-01-1782
The heat transfer process in a reciprocating engine is dominated by forced convection, which is drastically affected by mean flow, turbulence, flame propagation and its impingement on the combustion chamber walls. All these effects contribute to a transient heat flux, resulting in a fast-changing temporal and spatial temperature distribution at the surface of the combustion chamber walls. To quantify these changes in combustion chamber surface temperature, surface temperature measurements on the piston of a single cylinder diesel engine were taken. Therefore, thirteen fast-response thermocouples were installed in the piston surface. A wireless microwave telemetry system was used for data transmission out of the moving piston. A wide range of parameter studies were performed to determine the varying influences on the surface temperature of the piston.
Journal Article

Predictive Multi-Objective Operation Strategy Considering Battery Cycle Aging for Hybrid Electric Vehicles

2018-04-03
2018-01-1011
Due to the new CO2 targets for vehicles, electrification of powertrains and operation strategies for electrified powertrains have drawn more attention. This article presents a predictive multi-objective operation strategy for hybrid electric vehicles (HEVs), which simultaneously minimizes the fuel consumption and the cycle aging of traction batteries. This proposed strategy shows better performance by using predictive information and high robustness to inaccuracy of predictive information. In this work, the benefits of the developed operation strategies are demonstrated in a strong hybrid electric vehicle (sHEV) with P2-configuration. For the cycle aging of a lithium-ion battery, an empirical model is built up with Gaussian processes based on experimental data.
Technical Paper

Investigations on the Influence of Fuel Oil Film Interaction on Pre-ignition Events in Highly Boosted DI Gasoline Engines

2018-04-03
2018-01-1454
Premature and uncontrolled flame initiation, called pre-ignition (PI), is a prominent issue in the development of spark-ignited engines. It is commonly assumed that this abnormal combustion mode hinders progress in engine downsizing, thus inhibiting development of more efficient engines. The phenomenon is primarily observed in highly turbocharged spark ignited (SI) engines in the full load regime at low engine speeds. Subsequent engine knock induces extremely high peak pressures, potentially causing severe engine damage. The mechanisms leading to this phenomenon are not completely understood; however, it is quite plausible that a multiphase process is responsible for the pre-ignition. One effect could be the interaction between injected fuel drops and the oil film on the cylinder liner. Under certain conditions, droplets of oil or oil/fuel mixture can detach or splash from the film, leading to pre-ignition at the droplet surface towards the end of the compression phase.
Technical Paper

Comparison of Shadowgraph Imaging, Laser-Doppler Anemometry and X-Ray Imaging for the Analysis of Near Nozzle Velocities of GDI Fuel Injectors

2017-10-08
2017-01-2302
The fuel spray behavior in the near nozzle region of a gasoline injector is challenging to predict due to existing pressure gradients and turbulences of the internal flow and in-nozzle cavitation. Therefore, statistical parameters for spray characterization through experiments must be considered. The characterization of spray velocity fields in the near-nozzle region is of particular importance as the velocity information is crucial in understanding the hydrodynamic processes which take place further downstream during fuel atomization and mixture formation. This knowledge is needed in order to optimize injector nozzles for future requirements. In this study, the results of three experimental approaches for determination of spray velocity in the near-nozzle region are presented. Two different injector nozzle types were measured through high-speed shadowgraph imaging, Laser Doppler Anemometry (LDA) and X-ray imaging.
Technical Paper

Comparison of a State of the Art Hydraulic Brake System with a Decentralized Hydraulic Brake System Concept for Electric Vehicles

2017-09-17
2017-01-2515
The ongoing changes in the development of new power trains and the requirements due to driver assistance systems and autonomous driving could be the enabler for completely new brake system configurations. The shift in the brake load collective has to be included in the systems requirements for electric vehicles. Many alternative concepts for hydraulic brake systems, even for decentralized configurations, can be found in the literature. For a decentralized system with all state of the art safety functionalities included, four actuators are necessary. Therefore, the single brake module should be as cost-effective as possible. Previous papers introduced systems which are for example based on plunger-like concepts, which are very expensive and heavy due to the needed gearing and design. In this paper a comparison between a state of the art hydraulic brake system using an electromechanical brake booster, and a completely new decentralized hydraulic brake concept is presented.
Technical Paper

Impact of the Injection and Gas Exchange on the Particle Emission of a Spark Ignited Engine with Port Fuel Injection

2017-03-28
2017-01-0652
This study presents a methodology to predict particle number (PN) generation on a naturally aspirated 4-cylinder gasoline engine with port fuel injection (PFI) from wall wetting, employing numerical CFD simulation and fuel film analysis. Various engine parameters concerning spray pattern, injection timing, intake valve timing, as well as engine load/speed were varied and their impact on wall film and PN was evaluated. The engine, which was driven at wide open throttle (WOT), was equipped with soot particle sampling technology and optical access to the combustion chamber of cylinder 1 in order to visualise non-premixed combustion. High-speed imaging revealed a notable presence of diffusion flames, which were typically initiated between the valve seats and cylinder head. Their size was found to match qualitatively with particulate number measurements. A validated CFD model was employed to simulate spray propagation, film transport and droplet impingement.
X