Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Effects of Port Injection Specifications on Air-Fuel Ratio and Emission Behavior under Transient Operation

2018-10-30
2018-32-0012
When an electronically controlled fuel injection device is located at downstream in intake port (hereinafter defined as downstream injection, on the other hand, upstream injection is defined as that fuel injection device is located at upstream in intake port), the possibilities of an improvement in the engine startability, increase in maximum power, and decrease in THC during warming have been reported in visualizations of the intake port. In addition, the amount of wall adhesion decreased with downstream injection in previous paper [1]. In this paper, we examine the influence on the amount of wall adhesion due to the difference in injection position on fuel transport in the intake port during transient operation and the obtained exhaust A/F and the amount of exhaust gas emitted during transient operation are evaluated.
Technical Paper

Stability Control of Motorcycle

2011-11-08
2011-32-0558
We developed active control more suitable for sports riding than the previous electronic stability control system for enjoying sports riding by many users. One of them, the traction control system S-KTRC (Sports Kawasaki TRaction Control) uses the sensor output like not only the slippage calculated from the front and rear wheel speed but also engine speed, throttle position, and gear position etc. As the result, conditions of the motorcycle and rider's intention are calculated by ‘Motorcycle model’ in the ECU continuously. By this ‘Motorcycle model’, S-KTRC confirms the real time conditions and predicts the succeeded condition, every 5milliseconds to decide to govern torque. The ABS system KIBS (Kawasaki Intelligent anti-lock Brake System), it is possible to control the rear wheel's lift by using the pressure data of the front brake at the sudden braking operation.
Technical Paper

Application of Air Fuel Ratio Control to a Motorcycle with Dual Oxygen Sensor

2011-11-08
2011-32-0629
At the upstream part of the Three-Way Catalyst (TWC) an O₂ sensor (UpO₂S) is used for O₂ Feedback Control (O₂F/B) that controls the air-fuel ratio (A/F) close to the stoichiometric level. O₂ sensor has a bit of individual characteristic difference as for the switching the excess air ratios of output (λ shift). This phenomenon becomes remarkable according to the effects of unburnt elements in exhaust gas. Despite the O₂F/B implementation, A/F isn't controlled to the stoichiometric level and the conversion efficiency of the TWC could be lower. Maintaining a higher level of TWC conversion efficiency requires more accurate A/F control and corrections of the UpO₂S λ shift issue. Therefore, using an O₂ sensor at the downstream part of the TWC (DownO₂S)~where the effects of unburnt elements in exhaust gas are smaller~can be an effective way to restore these challenges.
Technical Paper

Analysis on Sport All-Terrain Vehicle Jumping with Multibody Dynamic Simulations

2005-10-12
2005-32-0013
In case of all-terrain vehicles (ATVs), which have characteristics of both motorcycles and cars, the effect of the rider movement can not be ignored when analyzing ATVs' behavior. We have developed a simulation system of an ATV with rider operations, which are throttle control and rider movement, by using multibody dynamic simulation software. To quantify the rider operations and verify the validity of the simulation system, we have conducted experiments and simulations on a sport-ATV in two jumping patterns. In this paper the results of comparison between simulation and experiment are reviewed. Then, we report the analysis results of the effects of the rider operations and the ground profile to ATV jumping behavior with using the simulation system.
Technical Paper

Development and Progress of the Exhaust-System Device for 2-Stroke Engines

1999-09-28
1999-01-3332
Though most street-use motorcycles are now equipped with 4-stroke engines, off-road motorcycles, especially moto-cross racers, still mainly use 2-stroke engines because of their high power and light weight. 2-stroke engines for moto-cross racers require the engine characteristics of high power and excellent throttle response on a wide range of engine speeds. These characteristics immediately require an effective exhaust device to improve output performance at the middle-speed range while maintaining high power at the high-speed range. The latest 2-stroke engines maintain such performance by using an exhaust device, and also by the application of extensively improved basic elements such as the scavenging passage arrangement, exhaust timing and passage shape, etc. This paper briefly summarizes continuous efforts for the improvement of our exhaust-system device from its beginning until the present.
X