Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Experimental Investigation of Ion Formation for Auto-Ignition Combustion in a High-Temperature and High-Pressure Combustion Vessel

2023-08-28
2023-24-0029
One of the main challenges in internal combustion engine design is the simultaneous reduction of all engine pollutants like carbon monoxide (CO), total unburned hydrocarbons (THC), nitrogen oxides (NOx), and soot. Low-temperature combustion (LTC) concepts for compression ignition (CI) engines, e.g., premixed charged compression ignition (PCCI), make use of pre-injections to create a partially homogenous mixture and achieve an emission reduction. However, they present challenges in the combustion control, with the usage of in-cylinder pressure sensors as feedback signal is insufficient to control heat release and pollutant emissions simultaneously. Thus, an additional sensor, such as an ion-current sensor, could provide further information on the combustion process and effectively enable clean and efficient PCCI operation.
Technical Paper

A Numerical Investigation of Potential Ion Current Sensor Applications in Premixed Charge Compression Ignition Engine

2022-09-16
2022-24-0041
Simultaneous reduction of engine pollutants (e.g., CO, THC, NOx, and soot) is one of the main challenges in the development of new combustion systems. Low-temperature combustion (LTC) concepts in compression ignition (CI) engines like premixed charged compression ignition (PCCI) make use of pre-injections to create a partly homogenous mixture. In the PCCI combustion regime, a direct correlation between injection and pollutant formation is no longer present because of long ignition delay times. In LTC combustion systems, the in-cylinder pressure sensor is normally used to help the combustion control. However, to allow the control of PCCI engines, new sensor concepts are investigated to obtain additional information about the PCCI combustion for advanced controller structures. In LTC combustion systems like gasoline-controlled autoignition (GCAI) concepts, the application of ion current sensors enables additional monitoring of the combustion process with real-time capability.
Technical Paper

Nonlinear Identification Modeling for PCCI Engine Emissions Prediction Using Unsupervised Learning and Neural Networks

2020-04-14
2020-01-0558
Premixed charged compression ignition (PCCI) is an advanced combustion strategy, which has the potential to achieve ultra-low nitrogen oxide and soot emissions at high thermal efficiencies. PCCI combustion is characterized by a complex nonlinear chemical-physical process, which indicates that a physical description involves significant development times and also high computation cost. This paper presents a method to use cylinder pressure data and engine operations parameters for prediction of PCCI engine emissions by unsupervised learning and nonlinear identification techniques. The proposed method first uses principal component analysis (PCA) to reduce the dimension of the cylinder-pressure data. Based on the PCA analysis, a multi-input multi-out model was developed for nitrogen oxide and soot emission prediction by multi-layer perceptron (MLP) neural network.
Technical Paper

Towards an Integral Combustion Model for Model-Based Control of PCCI Engines

2019-09-09
2019-24-0001
Physics-based models in a closed-loop feedback control of a premixed charge compression ignition (PCCI) engine can improve the combustion efficiency and potentially reduce harmful NOx and soot emissions. A stand-alone multi-zone combustion model has been proposed in the literature using a physics-based mixing approach. The scalar dissipation rate emerged as the determining parameter in the model for mixing among different zones in the mixture fraction space. However, the calculation of the scalar dissipation rate depends on three approaches: three-dimensional computational fluid dynamics (3-D CFD) combustion simulations based on representative interactive flamelet (RIF) model, tabulation, or an empirical algebraic model of the scalar dissipation rate fitted for the given operating conditions of the engine. While the 3-D CFD approach provides accurate results, it is computationally too expensive to use the multi-zone model in closed-loop control.
Technical Paper

Partially Premixed Combustion of Gasoline Type Fuels Using Larger Size Nozzle and Higher Compression Ratio in a Diesel Engine

2013-10-14
2013-01-2539
If fuels that are more resistant to auto-ignition are injected near TDC in compression ignition engines, they ignite much later than diesel fuel and combustion occurs when the fuel and air have had more chance to mix. This helps to reduce NOX and smoke emissions at much lower injection pressures compared to a diesel fuel. However, PPCI (Partially Premixed Compression Ignition) operation also leads to higher CO and HC at low loads and higher heat release rates at high loads. These problems can be significantly alleviated by managing the mixing through injector design (e.g. nozzle size and centreline spray angle) and changing CR (Compression Ratio). This work describes results of running a single-cylinder diesel engine on fuel blends by using three different nozzle design (nozzle size: 0.13 mm and 0.17 mm, centreline spray angle: 153° and 120°) and two different CRs (15.9:1 and 18:1).
Journal Article

A Cycle-Based Multi-Zone Simulation Approach Including Cycle-to-Cycle Dynamics for the Development of a Controller for PCCI Combustion

2009-04-20
2009-01-0671
Subject of this work is a simulation model for PCCI combustion that can be used in closed-loop control development. A detailed multi-zone chemistry model for the high-pressure part of the engine cycle is extended by a mean value model accounting for the gas exchange losses. The resulting model is capable of describing PCCI combustion with stationary excactness. It is at the same time very economic with respect to computational costs. The model is further extended by identified system dynamics influencing the stationary inputs. For this, a Wiener model is set up that uses the stationary model as a nonlinear system representation. In this way, a dynamic nonlinear model for the representation of the controlled plant Diesel engine is created.
X