Refine Your Search

Topic

Author

Search Results

Technical Paper

Data-Driven Modeling of Linear and Nonlinear Dynamic Systems for Noise and Vibration Applications

2023-05-08
2023-01-1078
Data-driven modeling can help improve understanding of the governing equations for systems that are challenging to model. In the current work, the Sparse Identification of Nonlinear Dynamical systems (SINDy) is used to predict the dynamic behavior of dynamic problems for NVH applications. To show the merit of the approach, the paper demonstrates how the equations of motions for linear and nonlinear multi-degree of freedom systems can be obtained. First, the SINDy method is utilized to capture the dynamic behavior of linear systems. Second, the accuracy of the SINDy algorithm is investigated with nonlinear dynamic systems. SINDy can output differential equations that correspond to the data. This method can be used to find equations for dynamical systems that have not yet been discovered or to study current systems to compare with our current understanding of the dynamical system.
Technical Paper

An Analysis of the Vehicle Dynamics Behind Pure Pursuit and Stanley Controllers

2023-04-11
2023-01-0901
As automated driving becomes more common, simulation of vehicle dynamics and control scenarios are increasingly important for investigating motion control approaches. In this work, a study of the differences between the Pure Pursuit and Stanley autonomous vehicle controllers, based on vehicle dynamics responses, is presented. Both are geometric controllers that use only immediate vehicle states, along with waypoint data, to control a vehicle’s future direction as it proceeds from point to point, and both are among the most popular lateral controllers in use today. The MATLAB Automated Driving Toolbox is employed to implement and virtually test the Pure Pursuit and Stanley lateral controllers in different driving scenarios. These include low intensity scenarios such as city driving, and emergency maneuvers such as the moose test.
Technical Paper

Human Perception of Seat Vibration Quality Pilot Study

2021-08-31
2021-01-1068
Driving comfort and automotive product quality are strongly associated with the vibration that is transmitted to the occupants of a vehicle at the points of contact to the human body, including the seat, steering wheel, and pedals. Of these three contact locations, the seats have the most general importance, as all occupants of a vehicle experience seat vibration. Particularly relevant to driving comfort is the way in which vehicle occupants perceive seat vibration, which may be different than expected considering sensor measured vibration levels. Much of the interest in seat vibration has been focused on internal combustion engine powertrain vibration, especially idle vibration. However, electrification of vehicles changes the focus from low frequency idle vibration to higher frequency vibration sources.
Technical Paper

A Forward Collision Warning System Using Deep Reinforcement Learning

2020-04-14
2020-01-0138
Forward collision warning is one of the most challenging concerns in the safety of autonomous vehicles. A cooperation between many sensors such as LIDAR, Radar and camera helps to enhance the safety. Apart from the importance of having a reliable object detector, the safety system should have requisite capabilities to make reasonable decisions in the moment. In this work, we concentrate on detecting front vehicles of autonomous cars using a monocular camera, beyond only a detection method. In fact, we devise a solution based on a cooperation between a deep object detector and a reinforcement learning method to provide forward collision warning signals. The proposed method models the relation between acceleration, distance and collision point using the area of the bounding box related to the front vehicle. An agent of learning automata as a reinforcement learning method interacts with the environment to learn how to behave in eclectic hazardous situations.
Technical Paper

Autonomous Lane Change Control Using Proportional-Integral-Derivative Controller and Bicycle Model

2020-04-14
2020-01-0215
As advanced vehicle controls and autonomy become mainstream in the automotive industry, the need to employ traditional mathematical models and control strategies arises for the purpose of simulating autonomous vehicle handling maneuvers. This study focuses on lane change maneuvers for autonomous vehicles driving at low speeds. The lane change methodology uses PID (Proportional-Integral-Derivative) controller to command the steering wheel angle, based on the yaw motion and lateral displacement of the vehicle. The controller was developed and tested on a bicycle model of an electric vehicle (a Chevrolet Bolt 2017), with the implementation done in MATLAB/Simulink. This simple mathematical model was chosen in order to limit computational demands, while still being capable of simulating a smooth lane change maneuver under the direction of the car’s mission planning module at modest levels of lateral acceleration.
Technical Paper

Design and Analysis of Kettering University’s New Proving Ground, the GM Mobility Research Center

2020-04-14
2020-01-0213
Rapid changes in the automotive industry, including the growth of advanced vehicle controls and autonomy, are driving the need for more dedicated proving ground spaces where these systems can be developed safely. To address this need, Kettering University has created the GM Mobility Research Center, a 21-acre proving ground located in Flint, Michigan at the former “Chevy in the Hole” factory location. Construction of a proving ground on this site represents a beneficial redevelopment of an industrial brownfield, as well as a significant expansion of the test facilities available at the campus of Kettering University. Test facilities on the site include a road course and a test pad, along with a building that has garage space, a conference room, and an indoor observation platform. All of these facilities are available to the students and faculty of Kettering University, along with their industrial partners, for the purpose of engaging in advanced transportation research and education.
Technical Paper

A Robust Failure Proof Driver Drowsiness Detection System Estimating Blink and Yawn

2020-04-14
2020-01-1030
The fatal automobile accidents can be attributed to fatigued and distracted driving by drivers. Driver Monitoring Systems alert the distracted drivers by raising alarms. Most of the image based driver drowsiness detection systems face the challenge of failure proof performance in real time applications. Failure in face detection and other important part (eyes, nose and mouth) detections in real time cause the system to skip detections of blinking and yawning in few frames. In this paper, a real time robust and failure proof driver drowsiness detection system is proposed. The proposed system deploys a set of detection systems to detect face, blinking and yawning sequentially. A robust Multi-Task Convolutional Neural Network (MTCNN) with the capability of face alignment is used for face detection. This system attained 97% recall in the real time driving dataset collected. The detected face is passed on to ensemble of regression trees to detect the 68 facial landmarks.
Journal Article

Preliminary Study of Perceived Vibration Quality for Human Hands

2019-06-05
2019-01-1522
A large body of knowledge exists regarding the effects of vibration on human beings; however, the emphasis is generally on the damaging effects of vibration. Very little information has been published regarding the effect of vibration on perceived consumer product quality. The perceived loudness of a product is quantified using the Fletcher-Munson equal loudness curves, but the equivalent curves for perceived vibration amplitude as a function of amplitude and frequency are not readily available. This “vibration quality” information would be valuable in the design and evaluation of many consumer products, including automobiles. Vibration information is used in the automobile design process where targets for steering wheel, seat track, and pedal vibration are common. For this purpose, the vibration information is considered proprietary and is generally applicable to a narrow frequency range. In this investigation, work paralleling the original Fletcher-Munson study is presented.
Technical Paper

Feasibility Study Using FE Model for Tire Load Estimation

2019-04-02
2019-01-0175
For virtual simulation of the vehicle attributes such as handling, durability, and ride, an accurate representation of pneumatic tire behavior is very crucial. With the advancement in autonomous vehicles as well as the development of Driver Assisted Systems (DAS), the need for an Intelligent Tire Model is even more on the increase. Integrating sensors into the inner liner of a tire has proved to be the most promising way in extracting the real-time tire patch-road interface data which serves as a crucial zone in developing control algorithms for an automobile. The model under development in Kettering University (KU-iTire), can predict the subsequent braking-traction requirement to avoid slip condition at the interface by implementing new algorithms to process the acceleration signals perceived from an accelerometer installed in the inner liner on the tire.
Technical Paper

Physical Validation Testing of a Smart Tire Prototype for Estimation of Tire Forces

2018-04-03
2018-01-1117
The safety of ground vehicles is a matter of critical importance. Vehicle safety is enhanced with the use of control systems that mitigate the effect of unachievable demands from the driver, especially demands for tire forces that cannot be developed. This paper presents the results of a smart tire prototyping and validation study, which is an investigation of a smart tire system that can be used as part of these mitigation efforts. The smart tire can monitor itself using in-tire sensors and provide information regarding its own tire forces and moments, which can be transmitted to a vehicle control system for improved safety. The smart tire is designed to estimate the three orthogonal tire forces and the tire aligning moment at least once per wheel revolution during all modes of vehicle operation, with high accuracy. The prototype includes two in-tire piezoelectric deformation sensors and a rotary encoder.
Technical Paper

Investigation and Development of a Slip Model for a Basic Rigid Ring Ride Model

2018-04-03
2018-01-1116
With the recent advances in rapid modeling and rapid prototyping, accurate simulation models for tires are very desirable. Selection of a tire slip model depends on the required frequency range and nonlinearity associated with the dynamics of the vehicle. This paper presents a brief overview of three major slip concepts including “Stationary slip”, “Physical transient slip”, and “Pragmatic transient slip”; tire models use these slip concepts to incorporate tire slip behavior. The review illustrates that there can be no single accurate slip model which could be ideally used for all modes of vehicle dynamics simulations. For this study, a rigid ring based semi-analytical tire model for intermediate frequency (up to 100 Hz) is used.
Technical Paper

Using Digital Image Correlation to Measure Dynamics of Rolling Tires

2018-04-03
2018-01-1217
Vehicles are in contact with the road surface through tires, and the interaction at the tire-road interface is usually the major source of vibrations that is experienced by the passengers in the vehicle. Thus, it is critical to measure the vibrational characteristics of the tires in order to improve the safety and comfort of the passengers and also to make the vehicle quieter. The measurement results can also be used to validate numerical models. In this paper, Digital Image Correlation (DIC) as a non-contact technique is used to measure the dynamics of a racing tire in static and rolling conditions. The Kettering University FSAE car is placed on the dynamometer machine for this experiment. A pair of high-speed cameras is used to capture high-resolution images of the tire in a close-up view. The images are processed using DIC to obtain strain and displacement of the sidewall of the tire during rolling. The experiment is performed for various testing speeds.
Technical Paper

A Numerical Study on the Effect of Enhanced Mixing on Combustion and Emissions in Diesel Engines

2016-04-05
2016-01-0606
A numerical and experimental study of the use of air motion control, piston bowl shape, and injector configuration on combustion and emissions in diesel engines has been conducted. The objective of this study is to investigate the use of flow control within the piston bowl during compression to enhance fuel air mixing to achieve a uniform air-fuel mixture to reduce soot and NO emissions. In addition to flow control different piston bowl geometries and injector spray angles have been considered and simulated using three-dimensional computational fluid dynamics and experiments. The results include cylinder pressure and emissions measurements and contour plots of fuel mass fraction, soot, and NO. The results show that soot and NO emissions can be reduced by proper flow control and piston bowl design.
Technical Paper

Injury Sources for Second Row Occupants in Frontal Crashes Considering Age and Restraint Condition Influence

2015-04-14
2015-01-1451
The current study examined field data in order to document injury rates, injured body regions, and injury sources for persons seated in the second row of passenger vehicles. It was also intended to identify whether these varied with respect to age and restraint use in vehicles manufactured in recent years. Data from the 2007-2012 National Automotive Sampling System (NASS/CDS) was used to describe occupants seated in the second row of vehicles in frontal crashes. Injury plots, comparison of means and logistic regression analysis were used to seek factors associated with increased risk of injury. Restraint use reduced the risk of AIS ≥ 2 injury from approximately 1.8% to 5.8% overall. Seventy nine percent of the occupants in the weighted data set used either a lap and shoulder belt or child restraint system. The most frequently indicated injury source for persons with a MAIS ≥ 2 was “seat, back support”, across restraint conditions and for all but the youngest occupants.
Journal Article

Lean Implementation in Integrated Design and Manufacturing

2013-04-08
2013-01-1329
Lean applications in product development usually start with manufacturing due to the relative experience of measuring improvements and identifying wastes in physical settings. The full potential of lean implementation in any product development, however, can only be realized when applied throughout the process, starting with early process. Considering that the first and most essential principle in lean implementation is the characterization of value from the customer's perspective, it is imperative that the proper definition of value is realized at the beginning of the process. In addition, streaming and flowing of this customer's specified value should be realized throughout the process from start to finish. This paper discusses the application of lean principles to integrated design and manufacturing phases of the Product Development Process.
Technical Paper

Investigation of Airflow Induced Whistle Noise by HVAC Control Doors Utilizing a ‘V-Shape’ Rubber Seal

2011-05-17
2011-01-1615
Doors inside an automotive HVAC module are essential components to ensure occupant comfort by controlling the cabin temperature and directing the air flow. For temperature control, the function of a door is not only to close/block the airflow path via the door seal that presses against HVAC wall, but also control the amount of hot and cold airflow to maintain cabin temperature. To meet the stringent OEM sealing requirement while maintaining a cost-effective product, a “V-Shape” soft rubber seal is commonly used. However, in certain conditions when the door is in the position other than closed which creates a small gap, this “V-Shape” seal is susceptible to the generation of objectionable whistle noise for the vehicle passengers. This nuisance can easily reduce end-customer satisfaction to the overall HVAC performance.
Technical Paper

Blind-Spot Detection and Avoidance Utilizing In-Vehicle Haptic Feedback Force Feedback

2011-04-12
2011-01-0556
Steer-by-wire is a system where there are no mechanical connections between the steering wheel and the tires. With the inception of electric and hybrid cars, steer-by-wire is becoming more common. A steer-by-wire car opens many opportunities for additional feedback on the steering wheel. Providing haptic feedback through the steering wheel will add additional depth and capabilities to make the driving experience safer. In this paper we investigated the effects of force feedback on the steering wheel in order to detect and/or avoid blind spot collisions. Two types of force feedback are examined using a driving simulator: a rumble and a counter steering force. A rumble on the steering wheel can avoid blind-spot accidents by providing feedback to drivers about vehicles in their blind spots. Providing counter steering force feedback can help in the reduction in blind-spot accidents. The results show that adding counter steering force feedback did reduce blind-spot related collisions.
Technical Paper

Development of the Kettering University Snowmobile for the 2009 SAE Clean Snowmobile Challenge

2009-11-03
2009-32-0177
Affordable clean snowmobile technology has been developed. The goals of this design included reducing exhaust emissions to levels which are below the U.S Environmental Protection Agency (EPA) 2012 standard. Additionally, noise levels were to be reduced to below the noise mandates of 78 dB(A). Further, this snowmobile can operate using any blend of gasoline and ethanol from E0 to E85. Finally, achieving these goals would be a hollow victory if the cost and performance of the snowmobile were severely compromised. Snowmobiling is, after all, a recreational sport; thus the snowmobile must remain fun to drive and cost effective to produce. The details of this design effort including performance data are discussed in this paper. Specifically, the effort to modify a commercially available snowmobile using a two cylinder, four-stroke engine is described. This snowmobile was modified to run on a range of ethanol blended fuels using a closed-loop engine control system.
Technical Paper

Investigation of Joint Torque Characteristics for a Mechanical Counter - Pressure Spacesuit

2009-07-12
2009-01-2536
Mechanical counter-pressure (MCP) spacesuit designs have been a promising, but elusive alternative to historical and current gas pressurized spacesuit technology since the Apollo program. One of the important potential advantages of the approach is enhanced mobility as a result of reduced bulk and joint torques, but the literature provides essentially no quantitative joint torque data or quantitative analytical support. Decisions on the value of investment in MCP technology and on the direction of technology development are hampered by this lack of information since the perceived mobility advantages are an important factor. An experimental study of a simple mechanical counter-pressure suit (elbow) hinge joint has been performed to provide some test data and analytical background on this issue to support future evaluation of the technology potential and future development efforts.
Technical Paper

Effect of Head and Neck Anthropometry on the Normal Range of Motion of the Cervical Spine of Prepubescent Children

2009-06-09
2009-01-2302
Application of cervical spine range of motion data and related anthropometric measures of the head and neck include physical therapy, product design, and computational modeling. This study utilized the Cervical Range of Motion device (CROM) to define the normal range of motion of the cervical spine for subjects five (5) through ten (10) years of age. And, the data was collected and analyzed with respect to anatomical measures such as head circumference, face height, neck length, and neck circumference. This study correlates these static anthropometric measures to the kinematic measurement of head flexion, extension, lateral extension, and rotation.
X