Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Video Based Simulation of Daytime and Nighttime Rain Affecting Driver Visibility

2021-04-06
2021-01-0854
This paper presents a methodology for generating video realistic computer simulated rain, and the effect rain has on driver visibility. Rain was considered under three different rain rates, light, moderate and heavy, and in nighttime and daytime conditions. The techniques and methodologies presented in this publication rely on techniques of video tracking and projection mapping that have been previous published. Neale et al. [2004, 2016], showed how processes of video tracking can convert two-dimensional image data from video images into three-dimensional scaled computer-generated environments. Further, Neale et al. [2013,2016] demonstrated that video projection mapping, when combined with video tracking, enables the production of video realistic simulated environments, where videographic and photographic baseline footage is combined with three-dimensional computer geometry.
Technical Paper

Calibrating Digital Imagery in Limited Time Conditions of Dawn, Dusk and Twilight

2021-04-06
2021-01-0855
This paper presents a methodology for accurately representing dawn and dusk lighting conditions (twilight) through photographs and video recordings. Attempting to generate calibrated photographs and video during twilight conditions can be difficult, since the time available to capture the light changes rapidly over time. In contrast, during nighttime conditions, when the sun is no longer contributing light directly or indirectly through the sky dome, matching a specific time of night is not as relevant, as man-made lights are the dominate source of illumination. Thus, the initial setup, calibration and collection of calibrated video, when it is dark, is not under a time constraint, but during twilight conditions the time frame may be narrow. This paper applies existing methods for capturing calibrated footage at night but develops a method for adjusting the footage in the event matching an exact time during twilight is necessary.
Technical Paper

Speed Analysis from Video: A Method for Determining a Range in the Calculations

2021-04-06
2021-01-0887
This paper introduces a method for calculating vehicle speed and uncertainty range in speed from video footage. The method considers uncertainty in two areas; the uncertainty in locating the vehicle’s position and the uncertainty in time interval between them. An abacus style timing light was built to determine the frame time and uncertainty of time between frames of three different cameras. The first camera had a constant frame rate, the second camera had minor frame rate variability and the third had more significant frame rate variability. Video of an instrumented vehicle traveling at different, but known, speeds was recorded by all three cameras. Photogrammetry was conducted to determine a best fit for the vehicle positions. Deviation from that best fit position that still produced an acceptable range was also explored. Video metadata reported by iNPUT-ACE and Mediainfo was incorporated into the study.
Technical Paper

Nighttime Videographic Projection Mapping to Generate Photo-Realistic Simulation Environments

2016-04-05
2016-01-1415
This paper presents a methodology for generating photo realistic computer simulation environments of nighttime driving scenarios by combining nighttime photography and videography with video tracking [1] and projection mapping [2] technologies. Nighttime driving environments contain complex lighting conditions such as forward and signal lighting systems of vehicles, street lighting, and retro reflective markers and signage. The high dynamic range of nighttime lighting conditions make modeling of these systems difficult to render realistically through computer generated techniques alone. Photography and video, especially when using high dynamic range imaging, can produce realistic representations of the lighting environments. But because the video is only two dimensional, and lacks the flexibility of a three dimensional computer generated environment, the scenarios that can be represented are limited to the specific scenario recorded with video.
Technical Paper

Video Projection Mapping Photogrammetry through Video Tracking

2013-04-08
2013-01-0788
This paper examines a method for generating a scaled three-dimensional computer model of an accident scene from video footage. This method, which combines the previously published methods of video tracking and camera projection, includes automated mapping of physical evidence through rectification of each frame. Video Tracking is a photogrammetric technique for obtaining three-dimensional data from a scene using video and was described in a 2004 publication titled, “A Video Tracking Photogrammetry Technique to Survey Roadways for Accident Reconstruction” (SAE 2004-01-1221).
X