Refine Your Search

Search Results

Viewing 1 to 15 of 15
Technical Paper

Pycrash: An Open-Source Tool for Accident Reconstruction

2021-04-06
2021-01-0896
Accident reconstructionists routinely rely on computer software to perform analyses. While there are a variety of software packages available to accident reconstructionists, many rely on custom spreadsheet-based applications for their analyses. Purchased packages provide an improved interface and the ability to produce sophisticated animations of vehicle motion but can be cost prohibitive. Pycrash is a free, open-source Python-based software package that, in its current state, can perform basic accident reconstruction calculations, automate data analyses, simulate single vehicle motion and, perform impulse-momentum based analyses of vehicle collisions. In this paper, the current capabilities of Pycrash are illustrated and its accuracy is assessed using matching PC-Crash simulations performed using PC-Crash.
Technical Paper

Speed Analysis from Video: A Method for Determining a Range in the Calculations

2021-04-06
2021-01-0887
This paper introduces a method for calculating vehicle speed and uncertainty range in speed from video footage. The method considers uncertainty in two areas; the uncertainty in locating the vehicle’s position and the uncertainty in time interval between them. An abacus style timing light was built to determine the frame time and uncertainty of time between frames of three different cameras. The first camera had a constant frame rate, the second camera had minor frame rate variability and the third had more significant frame rate variability. Video of an instrumented vehicle traveling at different, but known, speeds was recorded by all three cameras. Photogrammetry was conducted to determine a best fit for the vehicle positions. Deviation from that best fit position that still produced an acceptable range was also explored. Video metadata reported by iNPUT-ACE and Mediainfo was incorporated into the study.
Journal Article

An Optimization of Small Unmanned Aerial System (sUAS) Image Based Scanning Techniques for Mapping Accident Sites

2019-04-02
2019-01-0427
Small unmanned aerial systems have gained prominence in their use as tools for mapping the 3-dimensional characteristics of accident sites. Typically, the process of mapping an accident site involves taking a series of overlapping, high resolution photographs of the site, and using photogrammetric software to create a point cloud or mesh of the site. This process, known as image-based scanning, is explored and analyzed in this paper. A mock accident site was created that included a stopped vehicle, a bicycle, and a ladder. These objects represent items commonly found at accident sites. The accident site was then documented with several different unmanned aerial vehicles at differing altitudes, with differing flight patterns, and with different flight control software. The photographs taken with the unmanned aerial vehicles were then processed with photogrammetry software using different methods to scale and align the point clouds.
Journal Article

Speed Analysis of Yawing Passenger Vehicles Following a Tire Tread Detachment

2019-04-02
2019-01-0418
This paper presents yaw testing of vehicles with tread removed from tires at various locations. A 2004 Chevrolet Malibu and a 2003 Ford Expedition were included in the test series. The vehicles were accelerated up to speed and a large steering input was made to induce yaw. Speed at the beginning of the tire mark evidence varied between 33 mph and 73 mph. Both vehicles were instrumented to record over the ground speed, steering angle, yaw angle and in some tests, wheel speeds. The tire marks on the roadway were surveyed and photographed. The Critical Speed Formula has long been used by accident reconstructionists for estimating a vehicle’s speed at the beginning of yaw tire marks. The method has been validated by previous researchers to calculate the speed of a vehicle with four intact tires. This research extends the Critical Speed Formula to include yawing vehicles following a tread detachment event.
Technical Paper

Low Speed Override of Passenger Vehicles with Heavy Trucks

2019-04-02
2019-01-0430
In low speed collisions (under 15 mph) that involve a heavy truck impacting the rear of a passenger vehicle, it is likely that the front bumper of the heavy truck will override the rear bumper beam of the passenger vehicle, creating an override/underride impact configuration. There is limited data available for study when attempting to quantify vehicle damage and crash dynamics in low-speed override/underride impacts. Low speed impact tests were conducted to provide new data for passenger vehicle dynamics and damage assessment for low speed override/underride rear impacts to passenger vehicles. Three tests were conducted, with a tractor-trailer impacting three different passenger vehicles at 5 mph and 10 mph. This paper presents data from these three tests in order to expand the available data set for low speed override/underride collisions.
Technical Paper

Braking and Swerving Capabilities of Three-Wheeled Motorcycles

2019-04-02
2019-01-0413
This paper reports testing and analysis of the braking and swerving capabilities of on-road, three-wheeled motorcycles. A three-wheeled vehicle has handling and stability characteristics that differ both from two-wheeled motorcycles and from four-wheeled vehicles. The data reported in this paper will enable accident reconstructionists to consider these different characteristics when analyzing a three-wheeled motorcycle operator’s ability to brake or swerve to avoid a crash. The testing in this study utilized two riders operating two Harley-Davidson Tri-Glide motorcycles with two wheels in the rear and one in the front. Testing was also conducted with ballast to explore the influence of passenger or cargo weight. Numerous studies have documented the braking capabilities of two-wheeled motorcycles with riders of varying skill levels and with a range of braking systems.
Technical Paper

Lateral and Tangential Accelerations of Left Turning Vehicles from Naturalistic Observations

2019-04-02
2019-01-0421
When reconstructing collisions involving left turning vehicles at intersections, accident reconstructionists are often required to determine the relative timing and spacing between two vehicles involved in such a collision. This time-space analysis frequently involves determining or prescribing a path and acceleration profile for the left turning vehicle. Although numerous studies have examined the straight-line acceleration of vehicles, only two studies have presented the tangential and lateral acceleration of left turning vehicles. This paper expands on the results of those limited studies and presents a methodology to automatically detect and track vehicles in a video file. The authors made observations of left turning vehicles at three intersections. Each intersection incorporated permissive green turn phases for left turning vehicles.
Technical Paper

Mid-Range Data Acquisition Units UsingGPS and Accelerometers

2018-04-03
2018-01-0513
In the 2016 SAE publication “Data Acquisition using Smart Phone Applications,” Neale et al., evaluated the accuracy of basic fitness applications in tracking position and elevation using the GPS and accelerometer technology contained within the smart phone itself [1]. This paper further develops the research by evaluating mid-level applications. Mid-level applications are defined as ones that use a phone’s internal accelerometer and record data at 1 Hz or greater. The application can also utilize add-on devices, such as a Bluetooth enabled GPS antenna, which reports at a higher sample rate (10 Hz) than the phone by itself. These mid-level applications are still relatively easy to use, lightweight and affordable [2], [3], [4], but have the potential for higher data sample rates for the accelerometer (due to the software) and GPS signal (due to the hardware). In this paper, Harry’s Lap Timer™ was evaluated as a smart phone mid-level application.
Technical Paper

An Analytical Review and Extension of Two Decades of Research Related to PC-Crash Simulation Software

2018-04-03
2018-01-0523
PC-Crash is a vehicular accident simulation software that is widely used by the accident reconstruction community. The goal of this article is to review the prior literature that has addressed the capabilities of PC-Crash and its accuracy and reliability for various applications (planar collisions, rollovers, and human motion). In addition, this article aims to add additional analysis of the capabilities of PC-Crash for simulating planar collisions and rollovers. Simulation analysis of five planar collisions originally reported and analyzed by Bailey [2000] are reexamined. For all five of these collisions, simulations were obtained with the actual impact speeds that exhibited excellent visual agreement with the physical evidence. These simulations demonstrate that, for each case, the PC-Crash software had the ability to generate a simulation that matched the actual impact speeds and the known physical evidence.
Technical Paper

An Evaluation of Two Methodologies for Lens Distortion Removal when EXIF Data is Unavailable

2017-03-28
2017-01-1422
Photogrammetry and the accuracy of a photogrammetric solution is reliant on the quality of photographs and the accuracy of pixel location within the photographs. A photograph with lens distortion can create inaccuracies within a photogrammetric solution. Due to the curved nature of a camera’s lens(s), the light coming through the lens and onto the image sensor can have varying degrees of distortion. There are commercially available software titles that rely on a library of known cameras, lenses, and configurations for removing lens distortion. However, to use these software titles the camera manufacturer, model, lens and focal length must be known. This paper presents two methodologies for removing lens distortion when camera and lens specific information is not available. The first methodology uses linear objects within the photograph to determine the amount of lens distortion present. This method will be referred to as the straight-line method.
Technical Paper

Post-Impact Dynamics for Vehicles with a High Yaw Velocity

2016-04-05
2016-01-1470
Calculating the speed of a yawing and braked vehicle often requires an estimate of the vehicle deceleration. During a steering induced yaw, the rotational velocity of the vehicle will typically be small enough that it will not make up a significant portion of the vehicle’s energy. However, when a yaw is impact induced and the resulting yaw velocity is high, the rotational component of the vehicle’s kinetic energy can be significant relative to the translational component. In such cases, the rotational velocity can have a meaningful effect on the deceleration, since there is additional energy that needs dissipated and since the vehicle tires can travel a substantially different distance than the vehicle center of gravity. In addition to the effects of rotational energy on the deceleration, high yaw velocities can also cause steering angles to develop at the front tires. This too can affect the deceleration since it will influence the slip angles at the front tires.
Technical Paper

A Survey of Multi-View Photogrammetry Software for Documenting Vehicle Crush

2016-04-05
2016-01-1475
Video and photo based photogrammetry software has many applications in the accident reconstruction community including documentation of vehicles and scene evidence. Photogrammetry software has developed in its ease of use, cost, and effectiveness in determining three dimensional data points from two dimensional photographs. Contemporary photogrammetry software packages offer an automated solution capable of generating dense point clouds with millions of 3D data points from multiple images. While alternative modern documentation methods exist, including LiDAR technologies such as 3D scanning, which provide the ability to collect millions of highly accurate points in just a few minutes, the appeal of automated photogrammetry software as a tool for collecting dimensional data is the minimal equipment, equipment costs and ease of use.
Journal Article

Tire Mark Striations: Sensitivity and Uncertainty Analysis

2016-04-05
2016-01-1468
Previous work demonstrated that the orientation of tire mark striations can be used to infer the braking actions of the driver [1]. An equation that related tire mark striation angle to longitudinal tire slip, the mathematical definition of braking, was presented. This equation can be used to quantify the driver’s braking input based on the physical evidence. Braking input levels will affect the speed of a yawing vehicle and quantifying the amount of braking can increase the accuracy of a speed analysis. When using this technique in practice, it is helpful to understand the sensitivity and uncertainties of the equation. The sensitivity and uncertainty of the equation are explored and presented in this study. The results help to formulate guidelines for the practical application of the method and expected accuracy under specified conditions. A case study is included that demonstrates the analysis of tire mark striations deposited during a real-world accident.
Technical Paper

Video Projection Mapping Photogrammetry through Video Tracking

2013-04-08
2013-01-0788
This paper examines a method for generating a scaled three-dimensional computer model of an accident scene from video footage. This method, which combines the previously published methods of video tracking and camera projection, includes automated mapping of physical evidence through rectification of each frame. Video Tracking is a photogrammetric technique for obtaining three-dimensional data from a scene using video and was described in a 2004 publication titled, “A Video Tracking Photogrammetry Technique to Survey Roadways for Accident Reconstruction” (SAE 2004-01-1221).
Technical Paper

Comparison of Calculated Speeds for a Yawing and Braking Vehicle to Full-Scale Vehicle Tests

2012-04-16
2012-01-0620
Accurately reconstructing the speed of a yawing and braking vehicle requires an estimate of the varying rates at which the vehicle decelerated. This paper explores the accuracy of several approaches to making this calculation. The first approach uses the Bakker-Nyborg-Pacejka (BNP) tire force model in conjunction with the Nicolas-Comstock-Brach (NCB) combined tire force equations to calculate a yawing and braking vehicle's deceleration rate. Application of this model in a crash reconstruction context will typically require the use of generic tire model parameters, and so, the research in this paper explored the accuracy of using such generic parameters. The paper then examines a simpler equation for calculating a yawing and braking vehicle's deceleration rate which was proposed by Martinez and Schlueter in a 1996 paper. It is demonstrated that this equation exhibits physically unrealistic behavior that precludes it from being used to accurately determine a vehicle's deceleration rate.
X