Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Investigation of the Cryogenic Nitrogen and Non-Cryogenic N-Dodecane and Ammonia Injections using a Real-Fluid Modelling Approach

2022-08-30
2022-01-1078
In modern compression ignition engines, the dense liquid fuel is directly injected into high pressure and temperature atmosphere, so the spray transitions from subcritical to supercritical conditions. To gain better control of the spray-combustion heat release process, it is important to have a physically accurate description of the spray development process. This work explored the effect of real-fluid thermodynamics in the computational prediction of multiphase flow for two non-ideal situations: the cryogenic nitrogen and non-cryogenic n-dodecane and ammonia sprays. Three real-fluid equations of state (EoS) such as the Soave-Redlich-Kwong (SRK), Peng-Robinson (PR), and Redlich-Kwong-Peng-Robinson (RKPR) coupled with the real-fluid Chung transport model were implemented in OpenFoam to predict the real-fluid thermodynamic properties. Validations against the CoolProp database were conducted.
Technical Paper

Investigation of the Engine Combustion Network Spray C Characteristics at High Temperature and High-Pressure Conditions Using Eulerian Model

2021-09-05
2021-24-0056
The morphology of the internal flow of Spray C was numerically investigated using an Eulerian volume-of-fluid (VOF) method in the finite-volume framework. The injector geometry available in the Engine Combustion Network (ECN) was employed, and the simulations were performed under the ambient condition at 900 K and 60 bar. The simulation data were analyzed for three important events: the initial nozzle opening, steady injection, and nozzle closing. First, projected densities on XY and XZ planes are computed radially at four axial locations. Projected density at 2 mm is compared with available experimental results, which show similar results. Then, the mass flow rate is found to match the reported experimental results and the virtually generated values from CMT using an appropriate discharge coefficient. An investigation on the appropriate discharge coefficient is performed and found that Cd = 0.63 ± 0.02 is acceptable for Spray C.
X