Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Effects of Multiple Injectors on Spray Characteristics and Efficiency in Internal Combustion Engines

2021-04-06
2021-01-0501
High-pressure internal combustion engines promise high efficiency, but a proper injection strategy to minimize heat losses and pollutant emissions remain a challenge. Previous studies have concluded that two injectors, placed at the piston bowl's rim, simultaneously improve the mixing and reduce the heat losses. The two-injector configuration further improves air utilization while keeping hot zones away from the cylinder walls. This study investigates how the two-injector concept delivers even higher efficiency by providing additional control of spray -and injection angles. Three-dimensional Reynolds-averaged Navier-Stokes simulations examined several umbrella angles, spray-to-spray angles, and injection orientations by comparing the two-injector cases with a reference one-injector case. The study focused on heat transfer reduction, where the two-injector approach reduces the heat transfer losses by up to 14.3 % compared to the reference case.
Technical Paper

A Simulation Study to Understand the Efficiency Analysis of Multiple Injectors for the Double Compression Expansion Engine (DCEE) Concept

2021-04-06
2021-01-0444
Heavy-duty vehicles face increasing demands of emission regulations. Reduced carbon-dioxide (CO2) emission targets motivate decreased fuel consumption for fossil fuel engines. Increased engine efficiency contributes to lower fuel consumption and can be achieved by lower heat transfer, friction and exhaust losses. The double compression expansion engine (DCEE) concept achieves higher efficiency, as it utilizes a split-cycle approach to increase the in-cylinder pressure and recover the normally wasted exhaust energy. However, the DCEE concept suffers heat losses from the high-pressure approach. This study utilizes up to three injectors to reduce the wall-gas temperature gradient rendering lower convective heat losses. The injector configuration consists of a standard central injector and two side-injectors placed at the rim of the bowl. An increased distance from side-injector to the wall delivered lower heat losses by centralizing hot gases in the combustion chamber.
Technical Paper

Reed Valve Evaluation and Selection for the Compressor Cylinder in Double Compression Expansion Engine (DCEE) Concept

2021-04-06
2021-01-0397
This paper shows the potential benefits of implementing four configurations of reed valves at the inlet of the two-stroke compressor used in the double compression expansion engine (DCEE) concept or 8-stroke engines over the conventional poppet valves used in 4-stroke internal combustion engines. To model the reed and poppet valve configurations, the discharge coefficient was estimated from RANS computational fluid dynamics simulations using ANSYS Fluent 2020 R1, with a pressure difference up to 0.099 bar. The calculated discharge coefficients for each case were then fed in a zero-one dimension model using GT-Power to understand the valve performance i.e. the volumetric efficiency of the compressor cylinder and the mean indicated pressure during the compression process at 1200 rpm.
Journal Article

Computational Study of a Multiple Fuel Injector Concept under High-Load and High-EGR Conditions

2020-09-15
2020-01-2034
A new concept utilizing multiple fuel injectors was proven effective at reducing heat transfer losses by directing spray plumes further away from the combustion chamber walls. In this concept, two injectors are mounted close to the rim of the piston bowl and point in opposite directions to generate swirling in-cylinder bulk motion. Moreover, a new flat-bowl piston design was also proposed in combination with the multiple fuel injectors for even larger improvements in thermal efficiency. However, all tests were performed at low-to-medium load conditions with no significant EGR. Modern engine concepts, such as the double compression-expansion engine (DCEE), have demonstrated higher thermal efficiency when operated at high-load conditions with a large amount of EGR for NOx control. Thus, this study aims to assess the effectiveness of the multiple-fuel-injector system under such conditions. In this study, a number of 3-D CFD simulations are performed using the RANS technique in CONVERGE.
Technical Paper

Validation of Computational Models for Isobaric Combustion Engines

2020-04-14
2020-01-0806
The focus of this study is to aid the development of the isobaric combustion engine by investigating multiple injection strategies at moderately high pressures. A three-dimensional (3D) commercial computational fluid dynamics (CFD) code, CONVERGE, was used to conduct simulations. The validation of the isobaric combustion case was carried out through the use of a single injector with multiple injections. The computational simulations were matched to the experimental data using methods outlined in this paper for different multiple injection cases. A sensitivity analysis to understand the effects of different modeling components on the quantitative prediction was carried out. First, the effects of the kinetic mechanisms were assessed by employing different chemical mechanisms, and the results showed no significant difference in the conditions under consideration.
Technical Paper

Effects of Geometry on Passive Pre-Chamber Combustion Characteristics

2020-04-14
2020-01-0821
Towards a fundamental understanding of the ignition characteristics of pre-chamber (PC) combustion engines, computational fluid dynamics (CFD) simulations were conducted using CONVERGE. To assist the initial design of the KAUST pre-chamber engine experiments, the primary focus of the present study was to assess the impact of design parameters such as throat diameter, nozzle diameter, and nozzle length. The well-stirred reactor combustion model coupled with a methane oxidation mechanism reduced from GRI 3.0 was used. A homogeneous charge of methane and air with λ = 1.3 on both the PC and main chamber (MC) was assumed. The geometrical parameters were shown to affect the pre-chamber combustion characteristics, such as pressure build-up, radical formation, and heat release as well as the composition of the jets penetrating and igniting the main chamber charge. In addition, the backflow of species pushed inside the pre-chamber due to the flow reversal (FR) event was analyzed.
Technical Paper

A Numerical Study on the Ignition of Lean CH4/Air Mixture by a Pre-Chamber-Initiated Turbulent Jet

2020-04-14
2020-01-0820
To provide insights into the fundamental characteristics of pre-chamber combustion engines, the ignition of lean premixed CH4/air due to hot gas jets initiated by a passive narrow throated pre-chamber in a heavy-duty engine was studied computationally. A twelve-hole pre-chamber geometry was investigated using CONVERGETM software. The numerical model was validated against the experimental results. To elucidate the main-chamber ignition mechanism, the spark plug location and spark timing were varied, resulting in different pressure gradient during turbulent jet formation. Different ignition mechanisms were observed for turbulent jet ignition of lean premixed CH4/air, based on the geometry effect. Ignition behavior was classified into the flame and jet ignition depending on the significant presence of hot active radicals. The jet ignition, mainly due to hot product gases was found to be advanced by the addition of a small concentration of radicals.
Technical Paper

CFD Study of Heat Transfer Reduction Using Multiple Injectors in a DCEE Concept

2019-01-15
2019-01-0070
Earlier studies on efficiency improvement in CI engines have suggested that heat transfer losses contribute largely to the total energy losses. Fuel impingement on the cylinder walls is typically associated with high heat transfer. This study proposes a two-injector concept to reduce heat losses and thereby improve efficiency. The two injectors are placed at the rim of the bowl to change the spray pattern. Computational simulations based on the Reynolds-Averaged Navier-Stokes approach have been performed for four different fuel injection timings in order to quantify the reduction in heat losses for the proposed concept. Two-injector concepts were compared to reference cases using only one centrally mounted injector. All simulations were performed in a double compression expansion engine (DCEE) concept using the Volvo D13 single-cylinder engine. In the DCEE, a large portion of the exhaust energy is re-used in the second expansion, thus increasing the thermodynamic efficiency.
Journal Article

Autoignition of Isooctane beyond RON and MON Conditions

2018-04-03
2018-01-1254
The present study experimentally examines the low-temperature autoignition area of isooctane within the in-cylinder pressure-in-cylinder temperature map. Experiments were run with the help of a Cooperative Fuel Research (CFR) engine. The boundaries of this engine were extended so that experiments could be performed outside the domain delimited by research octane number (RON) and motor octane number (MON) traces. Since homogeneous charge compression ignition (HCCI) combustion is governed by kinetics, the rotation speed for all the experiments was set at 600 rpm to allow time for low-temperature heat release (LTHR). All the other parameters (intake pressure, intake temperature, compression ratio, and equivalence ratio) were scanned, such as the occurrence of isooctane combustion. The principal results showed that LTHR for isooctane occurs effortlessly under high intake pressure (1.3 bar) and low intake temperature (25 °C).
Technical Paper

Investigation of Premixed and Diffusion Flames in PPC and CI Combustion Modes

2018-04-03
2018-01-0899
The experimental in-cylinder combustion process was compared with the numerical simualtion for naphtha fuel under conventional compression ignition (CI) and partially premixed combustion (PPC) conditions. The start of injection timing (SOI) with the single injection strategy was changed from late of −10 CAD aTDC to early of −40 CAD aTDC. The three-dimensional full cycle engine combustion simulation was performed coupling with gas phase chemical kinetics by the CFD code CONVERGE™. The flame index was used for evaluating the combustion evolution of premixed flame and diffusion flame. The results show that the flame index could be used as an indicator for in-cylinder homogeneity evaluation. Hydroperoxyl shows a similar distribution with the premixed combustion. Formaldehyde could be used as an indicator for low temperature combustion.
Technical Paper

Computational Study of Stratified Combustion in an Optical Diesel Engine

2017-03-28
2017-01-0573
Full cycle simulations of KAUST optical diesel engine were conducted in order to provide insights into the details of fuel spray, mixing, and combustion characteristics at different start of injection (SOI) conditions. Although optical diagnostics provide valuable information, the high fidelity simulations with matched parametric conditions improve fundamental understanding of relevant physical and chemical processes by accessing additional observables such as the local mixture distribution, intermediate species concentrations, and detailed chemical reaction rates. Commercial software, CONVERGE™, was used as the main simulation tool, with the Reynolds averaged Navier-Stokes (RANS) turbulence model and the multi-zone (SAGE) combustion model to compute the chemical reaction terms. SOI is varied from late compression ignition (CI) to early partially premixed combustion (PPC) conditions.
X