Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Screening of Potential Biomass-Derived Streams as Fuel Blendstocks for Mixing Controlled Compression Ignition Combustion

2019-04-02
2019-01-0570
Mixing controlled compression ignition, i.e., diesel engines are efficient and are likely to continue to be the primary means for movement of goods for many years. Low-net-carbon biofuels have the potential to significantly reduce the carbon footprint of diesel combustion and could have advantageous properties for combustion, such as high cetane number and reduced engine-out particle and NOx emissions. We developed a list of over 400 potential biomass-derived diesel blendstocks and populated a database with the properties and characteristics of these materials. Fuel properties were determined by measurement, model prediction, or literature review. Screening criteria were developed to determine if a blendstock met the basic requirements for handling in the diesel distribution system and use as a blend with conventional diesel. Criteria included cetane number ≥40, flashpoint ≥52°C, and boiling point or T90 ≤338°C.
Technical Paper

Development of an Experimental Database and Chemical Kinetic Models for Surrogate Gasoline Fuels

2007-04-16
2007-01-0175
The development of surrogate mixtures that represent gasoline combustion behavior is reviewed. Combustion chemistry behavioral targets that a surrogate should accurately reproduce, particularly for emulating homogeneous charge compression ignition (HCCI) operation, are carefully identified. Both short and long term research needs to support development of more robust surrogate fuel compositions are described. Candidate component species are identified and the status of present chemical kinetic models for these components and their interactions are discussed. Recommendations are made for the initial components to be included in gasoline surrogates for near term development. Components that can be added to refine predictions and to include additional behavioral targets are identified as well. Thermodynamic, thermochemical and transport properties that require further investigation are discussed.
Technical Paper

Analysis of Premixed Charge Compression Ignition Combustion With a Sequential Fluid Mechanics-Multizone Chemical Kinetics Model

2005-04-11
2005-01-0115
We have developed a methodology for analysis of Premixed Charge Compression Ignition (PCCI) engines that applies to conditions in which there is some stratification in the air-fuel distribution inside the cylinder at the time of combustion. The analysis methodology consists of two stages: first, a fluid mechanics code is used to determine temperature and equivalence ratio distributions as a function of crank angle, assuming motored conditions. The distribution information is then used for grouping the mass in the cylinder into a two-dimensional (temperature-equivalence ratio) array of zones. The zone information is then handed on to a detailed chemical kinetics model that calculates combustion, emissions and engine efficiency information. The methodology applies to situations where chemistry and fluid mechanics are weakly linked.
Technical Paper

Comparative Environmental Performance of Two Diesel-Fuel Oxygenates: Dibutyl Maleate (DBM) and Tripropylene Glycol Monomethyl Ether (TGME)

2002-06-03
2002-01-1943
Many studies have shown that the addition of oxygen-bearing compounds to diesel fuel can significantly reduce particulate emissions. To assist in the evaluation of the environmental performance of diesel-fuel oxygenates, we have implemented a suite of diagnostic models for simulating the transport of compounds released to air, water, and soils/groundwater as well as regional landscapes. As a means of studying the comparative performance of DBM and TGME, we conducted a series of simulations for selected environmental media. Benzene and methyl tertiary butyl ether (MTBE) were also addressed because they represent benchmark fuel-related compounds that have been the subject of extensive environmental measurements and modeling. The simulations showed that DBM and TGME are less mobile than MTBE in soil because of reduced vapor-phase transport and increased retention on soil particles.
Technical Paper

Detailed Chemical Kinetic Modeling of Diesel Combustion with Oxygenated Fuels

2001-03-05
2001-01-0653
The influence of the addition of oxygenated hydrocarbons to diesel fuels has been studied, using a detailed chemical kinetic model. Resulting changes in ignition and soot precursor production have been examined. N-heptane was used as a representative diesel fuel, and methanol, ethanol, dimethyl ether, dimethoxymethane and methyl butanoate were used as oxygenated fuel additives. It was found that addition of oxygenated hydrocarbons reduced the production of soot precursors. When the overall oxygen content in the fuel reached approximately 30-40 % by mass, production of soot precursors fell effectively to zero, in agreement with experimental studies. The kinetic factors responsible for these observations are discussed.
Technical Paper

Diesel Combustion: An Integrated View Combining Laser Diagnostics, Chemical Kinetics, And Empirical Validation

1999-03-01
1999-01-0509
This paper proposes a structure for the diesel combustion process based on a combination of previously published and new results. Processes are analyzed with proven chemical kinetic models and validated with data from production-like direct injection diesel engines. The analysis provides new insight into the ignition and particulate formation processes, which combined with laser diagnostics, delineates the two-stage nature of combustion in diesel engines. Data are presented to quantify events occurring during the ignition and initial combustion processes that form soot precursors. A framework is also proposed for understanding the heat release and emission formation processes.
Technical Paper

Autoignition Chemistry of the Hexane Isomers: An Experimental and Kinetic Modeling Study

1995-10-01
952406
Autoignition of the five distinct isomers of hexane is studied experimentally under motored engine conditions and computationally using a detailed chemical kinetic reaction mechanism. Computed and experimental results are compared and used to help understand the chemical factors leading to engine knock in spark-ignited engines and the molecular structure factors contributing to octane rating for hydrocarbon fuels. The kinetic model reproduces observed variations in critical compression ratio with fuel structure, and it also provides intermediate and final product species concentrations in much better agreement with observed results than has been possible previously. In addition, the computed results provide insights into the kinetic origins of fuel octane sensitivity.
X