Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Technical Paper

Investigation of the Acoustic Surface Power on a Cooling Fan Using the Mesh Morpher Optimizer

2019-04-02
2019-01-0833
A cooling fan is an essential device of the engine cooling system which is used to remove the heat generated inside the engine from the system. An essential element for successful fan designs is to evaluate the pressure over the fan blade since it can generate annoying noices, which have a negative impact on the fan’s performance and on the environment. Reducing the acoustic surface power will assist in building improved designs that comply with standards and regulations in achieving a more quiet environment. The usage of computational fluid dynamics (CFD), with support of mesh morphing, can provide simulation study for optimizing the shape of a fan blade to reduce the aeroacoustic effects. The investigation process will assist in examining and analyzing the acoustic performance of the prototype, impact of different parameters, and make a solid judgement about the model performance for improvement and optimization.
Technical Paper

A Numerical Study of the Effect of Longitudinal Vortex Generators on Heat Transfer Enhancement and Pressure Drop in a Rectangular Channel

2018-04-03
2018-01-0782
Longitudinal vortex generation is a common technique for enhancing heat transfer performance. It can be achieved by employing small flow manipulators, known as vortex generators (VGs), which are placed on the heat-transfer surface. The vortex generators can generate longitudinal vortices, which strongly disturb the flow structure, and have a significant influence on the velocity and temperature distributions, causing improved thermal transport. In this work, numerical simulations are conducted for a horizontal rectangular channel with and without a pair of longitudinal vortex generators. The vortex generators are fitted vertically on the bottom surface of the channel. The Computational Fluid Dynamics (CFD) analysis aims to acquire a better understanding of the flow structure and heat transfer mechanisms induced by longitudinal vortex generation. The simulation is performed using ANSYS Fluent, and three flow inlet velocities are considered: 1.38 m/s, 1.18 m/s, 0.98 m/s.
Technical Paper

Exhaust Heat Recovery System Study in Internal Combustion Engines

2018-04-03
2018-01-1374
Strict regulations exist in different countries with respect to vehicular emissions by their respective government bodies requiring automakers to design fuel-efficient vehicles. Fuel economy and carbon emission are the main factors affecting these regulations. In this competitive industry to make fuel efficient vehicles and reduce Green House Gas (GHG) emissions in internal combustions has led to various developments. Exhaust Heat Recovery System (EHRS) plays a vital role in improving powertrain efficiency. In this system, heat rejected by the engine is reused to heat the vehicle fluids faster (for example, engine coolant, engine oil, etc.) correspondingly reducing harmful gas emissions. In internal combustion engines, generally only 25% of the fuel energy is converted into useful power output and approximately 40% of it is lost in exhaust heat. Certain studies show that by using the EHRS, the power output can be increased to 40% and the heat loss can be reduced to as much as 25%.
Technical Paper

Investigation of the Effect of Vortex Generation on Flow Structure and Heat Transfer Enhancement using Particle Image Velocimetry (PIV)

2017-03-28
2017-01-1609
In this experimental work, a flow field test system embedded with different vortex generators was installed to investigate the impact of vortex generation on heat transfer of air flow in a horizontal channel, and the flow structure was evaluated using a particle image velocimetry (PIV) system. Three different configurations of vortex generators were fitted vertically on a flat plate, at attack angles of 15o, 30o, and 45o, and tested at four different incoming air velocities. An axial fan was used to supply the flow of air through the test section. The effects of Reynolds number, attack angle, and the shape of vortex generators were examined in this work. The experimental results showed that, the presence of vortex generators had considerable effect on temperature distribution, pressure drop, and heat transfer augmentation in the channel flow.
Technical Paper

Reducing the Acoustic Surface Power of a Cooling Fan Using the Mesh Morpher Optimizer

2017-03-28
2017-01-1610
Cooling fans have many applications in industrial and electronic fields that remove heat away from the system. The process of designing a new cooling fan with optimal performance and reduced acoustic sources can be fairly lengthy and expensive. The use of CFD with support of mesh morphing, along with the development of optimization techniques, can improve the acoustic’s performance of the fan model. This paper presents a new promising method which will support the design process of a new cooling fan with improved performance and less acoustic surface power generation. The CFD analysis is focused on reducing the acoustic surface power of a given cooling fan’s blade using the surface dipole acoustic power as the objective function, which leads to an optimized prototype design for a better performance. The Mesh Morpher Optimizer (MMO) in ANSYS Fluent is used in combination with a Simplex model of the broadband acoustic modeling.
Technical Paper

Experimental Investigation of the Impact of Nanofluids on Heat Transfer Performance of a Motorcycle Radiator

2017-03-28
2017-01-1611
In the present work, the effect of various nanofluids on automotive engine cooling was experimentally studied. Al2O3, TiC, SiC, MWNT (multi-walled nanotube), and SiO2 nanoparticles with average diameter ranging between 1 and 100 nm were mixed with distilled water to form nanofluids. An ultrasonic generator was used to generate uniform particle dispersion in the fluid. A compatibility test was carried out on all nanofluids and it was found that TiC, MWNT, and Si3N4 nanoparticles settled and separated from the fluid within 3 hours after preparation. The engine cooling performance testing setup consisted of an Aprilia SXV 450 engine, the nanofluid cooling loop, a radiator, a fan, etc. Thermocouples and resistance temperature detectors (RTD’s) were attached to the inlet and outlet of the radiator hose to monitor the temperature changes taking place in the cooling system. A flowmeter was attached to the inlet hose of the radiator to monitor the coolant flow rate.
Technical Paper

A Passive Solution to Differential Transient Cooling Issues Using Phase Change Materials

2016-04-05
2016-01-0008
Thermal management systems (TMS) of armored ground vehicle designs are often incapable of sustained heat rejection during high tractive effort conditions and ambient conditions. During these conditions, which mainly consist of high torque low speed operations, gear oil temperatures can rise over the allowable 275°F limit in less than twenty minutes. This work outlines an approach to temporarily store excess heat generated by the differential during high tractive effort situations through the use of a passive Phase Change Material (PCM) retrofit thereby extending the operating time, reducing temperature transients, and limiting overheating. A numerical heat transfer model has been developed based on a conceptual vehicle differential TMS. The model predicts the differential fluid temperature response with and without a PCM retrofit. The developed model captures the physics of the phase change processes to predict the transient heat absorption and rejection processes.
Technical Paper

Small Engine Cooling and the Electric Water Pump

2004-09-27
2004-32-0084
A study has been conducted on a small engine cooling system in order to find a way to reduce common overheating problems at idle conditions and high engine speeds with restricted airflow. The system flow rates, pressure, and temperature characteristics were monitored at different positions in the system while engine speed was varied. The results show that by adjusting the flow rates according to certain variables, the overall effectiveness of the system is increased and overheating problems can be eliminated. The findings also show that this adjustment can be accomplished by incorporating a controllable electric water pump into the design. Dynamometer testing has also been conducted to show that, in addition to controlling flow rates, the use of the electric pump also possesses the potential of increasing the power output of the engine.
Technical Paper

Throttle Body Design for Optimum Driver Feedback

2003-06-23
2003-01-2278
The airflow through a standard automotive throttle body is not exactly proportional to the displacement of the accelerator pedal. Therefore, another method is needed to open the butterfly valve in order to ensure that airflow through the throttle body is metered equal to pedal displacement. This paper finds that the implementation of a cam-type pulley is necessary to achieve this prescribed goal.
Technical Paper

Intake Design for Maximum Performance

2003-06-23
2003-01-2277
The design of a race engine intake system involves many design considerations. Two very important areas of design are the intake manifold's volume and geometry. In considering these variables there are several different possible intake configurations. Such configurations will include single and dual plenum designs, as well as volume transitions. Dynamometer testing objectives will test different intake designs for the best overall engine power by comparing the areas under the engine power curve. Of the four intakes tested, the 2003 intake was found to make the best overall power.
Technical Paper

Improvements to Maximize Power in a Restricted 2002 Formula SAE Base Engine

2002-12-02
2002-01-3295
One of the major components of the 2002 Formula SAE car is the base engine. Due to the restrictions put on the intake, the airflow into the cylinders is minimal. The air has to enter through a 20mm venturi, which drastically restricts the flow to the motor greatly reducing power. One of our main aspects will be focusing on improved airflow into the motor. Major improvements must also be made to the internal workings of the motor to regain this lost power. Through extensive cylinder head work and use of lightweight components, this can be achieved. Reworking the head for more efficient flow and raising the compression to approximately 13.1:1 will significantly improve power and torque.
Technical Paper

Evolution of Intake Design for a Small Engine Formula Vehicle

2001-03-05
2001-01-1211
To obtain a maximum range for usable torque, Helmholtz theory is utilized to tune an Honda CBR 600 cc engine. The design objectives were to: 1) Increase performance by reducing pressure losses in the entire intake system; 2) Maximize the restrictor's design to increase airflow at lower pressure drops; 3) Improve throttle response through throttle body design and reduction of turbulence when full open; 4) Utilize runner design to improve tuning effects as predicted by Helmholtz resonance theory and; 5) Incorporate a plenum design with equal air distribution to all four cylinders.
Technical Paper

Aerodynamic Evaluation on Formula SAE Vehicles

2001-03-05
2001-01-1270
Aerodynamics plays an important role in the dynamic behavior of a vehicle. The purpose of this paper is to evaluate external and internal aerodynamics of the 1999 and 2000 Lawrence Technological University Formula SAE vehicles. The external aerodynamic study will be limited to form and interference drag and the evaluation of lift. The internal aerodynamics study will be limited to ram air to the intake, heat exchanger, and oil cooler.
Technical Paper

Engine Control Inputs and Signal Conditioning for Crankshaft and Camshaft Positioning

2000-08-21
2000-01-3092
The Formula SAE (FSAE team for 2000) at Lawrence Technological University is utilizing parts and equipment from a four cylinder, four carburetor, 600cc four stroke Honda motorcycle engine. These parts will provide the crankshaft and camshaft position information to an Engine Control Module that will control the engine when fuel injection is used to replace the carburetors. The FSAE team will develop an improved method to determine the crankshaft and camshaft positions. The new method will be implemented by adding sensors and electronic circuit to perform the necessary calculation to obtain the crankshaft and camshaft position.
Technical Paper

Alternate Fuels: Not Only for Automobiles Propane Conversion of a Residential Lawnmower

1999-03-01
1999-01-0281
The purpose of this paper is to present the design and assembly of a working prototype of an alternate fueled lawnmower. A variety of alternate fuels have been suggested to help reduce air quality problems. The conversion process from gasoline to Propane will be explained. To determine fuel consumption and developed horsepower, engine simulations were performed. Stoichiometric analysis was performed to determine and compare the products of combustion between Propane and gasoline. The prototype Propane fueled lawnmower is able to operate efficiently and with less emissions as compared with a comparable gasoline fueled lawnmower. Engine output has been reduced by 27%. By burning Propane, a relatively clean fuel, engine emissions have been reduced by 60% as compared to gasoline.
Technical Paper

A Steady State Vehicle Model to Predict Engine and Transmission Performance

1999-03-01
1999-01-0742
A steady state vehicle model is developed that will predict engine and automatic transmission operating conditions based on various vehicle configurations and operating conditions. The model provides a better understanding of the effects, including direction and magnitude, of changes in vehicle configuration and/or operating conditions on powertrain requirements. The model results can then be used as input into powertrain matching decisions. In general, the model will begin by determining vehicle road load requirements (wheel speed and torque) as a function of vehicle speed based on ambient, road, and vehicle inputs. Such road load requirement will then be cascaded into input and output requirements of the rear axle, transmission gearing, torque converter (locked and unlocked), and finally the engine. Wide open throttle engine torque data will also be translated into tractive effort at the wheels and resulting acceleration capability versus the vehicle road load requirements.
Technical Paper

Cold Temperature Effects on Spark Plug Performance

1998-10-19
982725
Fouling spark plugs on an internal combustion engine is greatly influenced by cold temperatures, especially at older assembly plants where the vehicle is moved several times because of discontinuities in the assembly line. To transition the vehicle, the operator starts the vehicle, places it in drive and accelerates rapidly, then shuts the vehicle off. This process only lasts ten to fifteen seconds and does not allow the spark plug or engine to get to a high enough operating temperature to evaporate away the fuel, which fouls the spark plugs. A spark plug fouling test is devised and is used to investigate which properties of fuel play the most significant anti-fouling role. Some additives believed to have anti-fouling properties will also be investigated to determine their significance. The anti-fouling fuel will then be implemented at the assembly plants.
X