Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Electrochemical CO2 and O2 Separation for Crew and Plant Environments

1992-07-01
921319
For long-duration space explorations such as the advanced manned missions to the moon and Mars, fully optimized environmental conditions and control systems are essential. This approach will not only maximize the efficiencies of the crew and other systems, but also minimize the requirements for power, weight, volume and expendables. Life Systems, working with the National Aeronautics and Space Administration-Johnson Space Center, has been investigating ways to apply various physical, chemical and electrochemical methods for this purpose. This paper presents a description of a closed ecosystem concept that includes electrochemical CO2 and O2 separators and a moisture condenser/separator for maintaining CO2, O2 and humidity levels in the crew and plant habitats at their respective optimal conditions. This concept was developed as a part of the Advanced Electrochemical CO2 Removal Process Study program sponsored by NASA-JSC.
Technical Paper

Air Revitalization System Integration

1984-07-01
840959
This paper will present a status review of Spacecraft Air Revitalization System (ARS) integration using regenerable techniques. The paper will address concepts of integration of individual subsystems into an Air Revitalization System, as well as integration of components within subsystems. An ARS design is presented based on the Electrochemical Depolarized Carbon Dioxide Concentrator Subsystem, the Sabatier Carbon Dioxide Reduction Subsystem, the Static Feed Water Electrolysis Subsystem, a condensing Humidity Control Subsystem, and a Water Handling Subsystem to perform the functions of CO2 removal, CO2 reduction, O2 generation, humidity control and by-product water distribution, respectively. The paper will also highlight the numerous advantages of this integration. Trace contaminant control and the nitrogen supply are not included in the ARS described in this paper.
X