Refine Your Search

Topic

Search Results

Technical Paper

Analytical Rotordynamic Study of a High-Speed Gear Transmission System for Race Applications

2020-09-30
2020-01-1502
In motorsport power transmission systems, high-speed operation can be associated with significant rotordynamic effects. Changes in the natural frequencies of lateral (bending) vibrational modes as a function of spin speed are brought about by gyroscopic action linked to flexible shafts and mounted gear components. In the investigation of high-speed systems, it is important that these effects are included in the analysis in order to accurately predict the critical speeds encountered due to the action of the gear mesh and other sources of excitation. The rotordynamic behaviour of the system can interact with crucial physical parameters of the transmission, such as the stiffnesses of the gear mesh and rolling element-to-raceway contact in the bearings. In addition, the presence of the gear mesh acts to couple the lateral and torsional vibration modes of a dual-shaft transmission through which a torque flows.
Technical Paper

Prediction of Acoustic Emissions of Turbocharger Bearings

2020-09-30
2020-01-1504
Turbochargers are progressively used in modern automotive engines to enhance engine performance and reduce energy loss and adverse emissions. Use of turbochargers along with other modern technologies has enabled development of significantly downsized internal combustion engines. However, turbochargers are major sources of acoustic emissions in modern automobiles. Their acoustics has a distinctive signature, originating from fluid-structure interactions. The bearing systems of turbochargers also constitute an important noise source. In this case, the acoustic emissions can mainly be attributed to hydrodynamic pressure fluctuations of the lubricant film. The developed analytical model determines the lubricant pressure distribution in the floating journal bearings used mainly in the modern turbocharges. This allows for an estimation of acoustic emissions.
Technical Paper

A Study on Attenuating Gear Teeth Oscillations at Low Engine Speeds Using Nonlinear Vibration Absorbers

2018-06-13
2018-01-1477
Gear oscillations are one of the most common sources of Noise, Vibration and Harshness (NVH) issues manifested in automotive powertrains. These oscillations are generated mainly due to impacts of the meshing gear teeth over a broad frequency range. To mitigate NVH phenomena, automotive manufacturers traditionally couple linear tuned vibration absorbers to the driveline. Common palliatives used are clutch dampers and dual mass flywheels, which generally suppress vibrations effectively only over narrow frequency bands. Nonlinear Energy Sinks (NESs) are a class of vibration absorbers with essentially nonlinear characteristics that are designed for dissipating vibration energy over broad frequency ranges (due to the employed nonlinearity). The NES does not have a preferential natural frequency; this is rather characterized by the nonlinear stiffness.
Technical Paper

A Review of the Literature on Modelling of Integrated SCR-in-DPF Systems

2017-03-28
2017-01-0976
The integration of selective catalytic reduction catalysts (SCR) into diesel particulate filters (DPF) as a way to treat nitrogen oxides (NOx) and particulate matter (PM) emission is an emerging technology in diesel exhaust aftertreatment. This is driven by ever-tightening limits on NOx and PM emission. In an integrated SCR-in-DPF (also known as SCRF®, SCR-on-DPF, SDPF, or SCR coated filter), the SCR catalyst is impregnated within the porous walls of the DPF. The compact, low weight/volume of the integrated unit provides improvement in the diesel engine cold start emission performance. Experimental investigations have shown comparable performance with standard SCR and DPF units for NOx conversion and PM control, respectively. The modelling of the integrated unit is complicated.
Technical Paper

Modelling the Exhaust Gas Recirculation Mass Flow Rate in Modern Diesel Engines

2016-04-05
2016-01-0550
The intrinsic model accuracy limit of a commonly used Exhaust Gas Recirculation (EGR) mass flow rate model in diesel engine air path control is discussed in this paper. This EGR mass flow rate model is based on the flow of a compressible ideal gas with unchanged specific heat ratio through a restriction cross-area within a duct. A practical identification procedure of the model parameters is proposed based on the analysis of the engine data and model structure. This procedure has several advantages which include simplicity, low computation burden and low engine test cost. It is shown that model tuning requires only an EGR valve sweep test at a few engine steady state operating points.
Technical Paper

Feasibility Study of Operating 2-Stroke Miller Cycles on a 4-Stroke Platform through Variable Valve Train

2015-09-01
2015-01-1974
A 2-stroke combustion cycle has higher power output densities compared to a 4-stroke cycle counterpart. The modern down-sized 4-stroke engine design can greatly benefit from this attribute of the 2-stroke cycle. By using appropriate variable valvetrain, boosting, and direct fuel injection systems, both cycles can be feasibly implemented on the same engine platform. In this research study, two valve strategies for achieving a two-stroke cycle in a four-stroke engine have been studied. The first strategy is based on balanced compression and expansion strokes, while the gas exchange is done through two different strokes. The second approach is a novel 2-stroke combustion strategy - here referred to as 2-stroke Miller - which maintains the expansion as achieved in a 4-stroke cycle but suppresses the gas exchange into the compression stroke.
Technical Paper

More Leaders and Fewer Initiatives: Key Ideas for the Future of Engineering

2015-04-14
2015-01-0411
Panel Discussions held at the SAE World Congress in both 2013 and 2014 observed that a shortage of good quality engineering talent formed a chronic and major challenge. (“Good quality” refers to applicants that would be shortlisted for interview.) While doubts have been expressed in some quarters, the shortage is confirmed by automotive sector employers and the Panel's view was that it was symptomatic of a range of issues, all of which have some bearing on the future of the profession. Initiatives to improve recruitment and retention have had varying degrees of success. Efforts need to be intensified in primary schools where negative perceptions develop and deepen. Schemes like AWIM that operate on a large scale and are designed to supplement school curricula should operate at an international level. Universities represent the entry point into the engineering profession and their role in the recruitment process as well as education and training is crucial.
Technical Paper

Performance of Slotted Metallic Membranes as Particulate Filters

2014-10-13
2014-01-2807
Stringent IC engine PM emission regulation requires development of future filter substrate materials to achieve high filtration efficiency, low filter pressure drop, low cost and highly durable solutions. Monolithic wall flow filters perform well as they achieve high filtration efficiency due to the formation of the PM cake structure while maintaining low substrate face velocities due to the large filtration area. Within the process industry, Micropore™ slotted metallic membrane filters offer both large surface areas and low filter pressure drops while maintaining the durability of metal substrates. The pore structure and pore arrangement can be readily tailored to suit specific applications. This paper characterizes a 300 μm thickness Micropore™ metallic membrane with slots of 10 μm by 400 μm in size in the context of application as an engine exhaust particulate filter. The investigation was based on single layer of Micropore™ slotted metallic membrane with size of 52 mm in diameter.
Technical Paper

A Predictive Model of Pmax and IMEP for Intra-Cycle Control

2014-04-01
2014-01-1344
In order to identify predictive models for a diesel engine combustion process, combustion cylinder pressure together with other fuel path variables such as rail pressure, injector current and sleeve pressure of 1000 continuous cycles were sampled and collected at high resolution. Using these engine steady state test data, three types of modeling approach have been studied. The first is the Auto-Regressive-Moving-Average (ARMA) model which had limited prediction ability for both peak combustion pressure (Pmax) and Indicated Mean Effective Pressure (IMEP). By applying correlation analysis, proper inputs were found for a linear predictive model of Pmax and IMEP respectively. The prediction performance of this linear model is excellent with a 30% fit number for both Pmax and IMEP. Further nonlinear modeling work shows that even a nonlinear Neural Network (NN) model does not have improved prediction performance compared to the linear predictive model.
Technical Paper

Elastohydrodynamics of Hypoid Gears in Axle Whine Conditions

2012-06-13
2012-01-1538
This paper presents an investigation into Elastohydrodynamic (EHL) modeling of differential hypoid gears that can be used in coupling with Newtonian (or multibody) dynamics to study Noise, Vibration and Harshness (NVH) phenomena, such as axle whine. The latter is a noise of a tonal nature, emitted from differential axles, characterised by the gear meshing frequency and its multiples. It appears at a variety of operating conditions; during drive and coasting, high and low torque loading. Key design targets for differential hypoid gears are improved efficiency and reduced vibration, which depend critically on the formation of an EHL lubricant film. The stiffness and damping of the oil film and friction generated in the contact can have important effects and cannot be neglected when examining the NVH behaviour of hypoid gears.
Technical Paper

The Effect of Vehicle Cruising Speed on the Dynamics of Automotive Hypoid Gears

2012-06-13
2012-01-1543
The dynamics of automotive differentials have been studied extensively to improve their efficiency and additionally, in recent years, generated noise and vibration. Various mathematical models have been proposed to describe the contact/impact of gear teeth pairs. However, the influence of vehicular cruising speed on the resisting torque has not been considered in sufficient detail. This can lead to unrealistic predictions with regards to loss of contact of teeth pair, a phenomenon which leads to NVH issues. The current work presents a torsional model of a hypoid gear pair. The resisting torque is a function of the traction force and aerodynamic drag, whilst the vehicle is cruising at nominally constant speed. The pinion input torque is derived through assumed instantaneous equilibrium conditions. In this approach, realistic excitation capturing the vehicle's driving conditions is imposed on the dynamics of the hypoid gear pair.
Technical Paper

Optical Analysis and Measurement of Crankcase Lubricant Oil Atomisation

2012-04-16
2012-01-0882
Crankcase emissions are a complex mixture of combustion products and, specifically Particulate Matter (PM) from lubricant oil. Crankcase emissions contribute substantially to the particle mass and particle number (PN) emitted from an internal combustion engine. Environmental legislation demands that the combustion and crankcase emissions are either combined to give a total measurement or the crankcase gases are re-circulated back into the engine, both strategies require particle filtration. There is a lack of understanding regarding the physical processes that generate crankcase emissions of lubricant oil, specifically how the bulk lubricant oil is atomised into droplets. In this paper the crankcase of a motored compression ignition engine, has been optically accessed to visualise the lubricant oil distribution. The oil distribution was analysed in detail using high speed laser diagnostics, at engine speeds up to 2000 rpm and oil temperatures of 90°C.
Journal Article

Accurate and Continuous Fuel Flow Rate Measurement Prediction for Real Time Application

2011-04-12
2011-01-1303
One of the most critical challenges currently facing the diesel engine industry is how to improve fuel economy under emission regulations. Improvement in fuel economy can be achieved by precisely controlling Air/Fuel ratio and by monitoring fuel consumption in real time. Accurate and repeatable measurements of fuel rate play a critical role in successfully controlling air/fuel ratio and in monitoring fuel consumption. Volumetric and gravimetric measurements are well-known methods for measuring fuel consumption of internal combustion engines. However, these methods are not suitable for obtaining fuel flow rate data used in real-time control/measurement. In this paper, neural networks are used to solve the problem concerning discontinuous data of fuel flow rate measured by using an AVL 733 s fuel meter. The continuous parts of discontinuous fuel flow rate are used to train and validate a neural network, which can then be used to predict the discontinuous parts of the fuel flow rate.
Technical Paper

Turbo-Discharging: Predicted Improvements in Engine Fuel Economy and Performance

2011-04-12
2011-01-0371
The importance of new technologies to improve the performance and fuel economy of internal combustion engines is now widely recognized and is essential to achieve CO₂ emissions targets and energy security. Increased hybridization, combustion improvements, friction reduction and ancillary developments are all playing an important part in achieving these goals. Turbocharging technology is established in the diesel engine field and will become more prominent as gasoline engine downsizing is more widely introduced to achieve significant fuel economy improvements. The work presented here introduces, for the first time, a new technology that applies conventional turbomachinery hardware to depressurize the exhaust system of almost any internal combustion engine by novel routing of the exhaust gases. The exhaust stroke of the piston is exposed to this low pressure leading to reduced or even reversed pumping losses, offering ≻5% increased engine torque and up to 5% reduced fuel consumption.
Technical Paper

Future Engine Control Enabling Environment Friendly Vehicle

2011-04-12
2011-01-0697
The aim of this paper is to compile the state of the art of engine control and develop scenarios for improvements in a number of applications of engine control where the pace of technology change is at its most marked. The first application is control of downsized engines with enhancement of combustion using direct injection, variable valve actuation and turbo charging. The second application is electrification of the powertrain with its impact on engine control. Various architectures are explored such as micro, mild, full hybrid and range extenders. The third application is exhaust gas after-treatment, with a focus on the trade-off between engine and after-treatment control. The fourth application is implementation of powertrain control systems, hardware, software, methods, and tools. The paper summarizes several examples where the performance depends on the availability of control systems for automotive applications.
Technical Paper

Exploring the Value of Open Source in SI Engine Control

2011-04-12
2011-01-0702
The notion of open source systems has been well established in systems software and typified by the development of the Linux operating system. An open source community is a community of interest that makes use of software tools in research and development. Their ongoing development is part of the free flow of ideas on which the community. The motivation for the work reported in this paper is to provide the research community in engine controls with a ready access to a complete engine management solution and the component parts. The work described in this paper extends open source principles to engine control with a portable spark ignition (SI) control strategy assembled using Simulink. The underlying low level drivers are written in C and designed for portability. A calibration tool is written in C and works over a controller area network (CAN) link to the engine control unit (ECU). The ECU hardware is based on the Infineon Tricore microcontroller.
Technical Paper

In-Cylinder Pressure Modelling with Artificial Neural Networks

2011-04-12
2011-01-1417
More and more stringent emission regulations require advanced control technologies for combustion engines. This goes along with increased monitoring requirements of engine behaviour. In case of emissions behaviour and fuel consumption the actual combustion efficiency is of highest interest. A key parameter of combustion conditions is the in-cylinder pressure during engine cycle. The measurement and detection is difficult and cost intensive. Hence, modelling of in-cylinder conditions is a promising approach for finding optimum control behaviour. However, on-line controller design requires real-time scenarios which are difficult to model and current modelling approaches are either time consuming or inaccurate. This paper presents a new approach of in-cylinder condition prediction. Rather than reconstructing in-cylinder pressure signals from vibration transferred signals through cylinder heads or rods this approach predicts the conditions.
Journal Article

The Impact of Biodiesel on Particle Number, Size and Mass Emissions from a Euro4 Diesel Vehicle

2010-04-12
2010-01-0796
New European emissions legislation (Euro5) specifies a limit for Particle Number (PN) emissions and therefore drives measurement of PN during vehicle development and homologation. Concurrently, the use of biofuel is increasing in the marketplace, and Euro5 specifies that reference fuel must contain a bio-derived portion. Work was carried out to test the effect of fuels containing different levels of Fatty Acid Methyl Ester (FAME) on particle number, size, mass and composition. Measurements were conducted with a Cambustion Differential Mobility Spectrometer (DMS) to time-resolve sub-micron particles (5-1000nm), and a Horiba Solid Particle Counting System (SPCS) providing PN data from a Euro5-compliant measurement system. To ensure the findings are relevant to the modern automotive business, testing was carried out on a Euro4 compliant passenger car fitted with a high-pressure common-rail diesel engine and using standard homologation procedures.
Journal Article

Innovations In Experimental Techniques For The Development of Fuel Path Control In Diesel Engines

2010-04-12
2010-01-1132
The recent development of diesel engine fuel injection systems has been dominated by how to manage the degrees of freedom that common rail multi-pulse systems now offer. A number of production engines already use four injection events while in research, work based on up to eight injection events has been reported. It is the degrees of freedom that lead to a novel experimental requirements. There is a potentially complex experimental program needed to simply understand how injection parameters influence the combustion process in steady state. Combustion behavior is not a continuum and as both injection and EGR rates are adjusted, distinct combustion modes emerge. Conventional calibration processes are severely challenged in the face of large number of degrees of freedom and as a consequence new development approaches are needed.
Technical Paper

Effects of Fuel Injection Parameters on Low Temperature Diesel Combustion Stability

2010-04-12
2010-01-0611
Low temperature diesel combustion (LTC) exhibits ultra low NOx and smoke emissions, but currently it has the problems of increased CO and THC emissions, and higher combustion instability compared to conventional diesel combustion. This study evaluated the effects of fuel injection parameters on combustion stability in a single cylinder research diesel engine running at low and intermediate speeds and loads under LTC operating conditions. The LTC operation was achieved using high rates of EGR. In this work, the fuel injection timing and injection pressure were varied to investigate their effects on combustion stability at fixed engine speed and total fuel quantity. The cylinder pressure and THC emissions were measured during the tests. The THC emissions and the coefficient of variability of IMEP (CoV(IMEP)) were used to assess combustion stability. The relationship between these two parameters was also evaluated.
X