Refine Your Search

Topic

Author

Search Results

Journal Article

Vortex Drag Revisited

2023-04-11
2023-01-0017
Some car shapes produce a substantial drag component from the generation of trailing vortices. This vortex (or lift dependent) drag is difficult to quantify for the whole vehicle, for reasons that are discussed. It has previously been shown that vortex drag may be assessed for some car features by consideration of the relationship between changes in drag and lift. In this paper this relationship is explored for some different vehicle shape characteristics, which produce positive and negative lift changes, and their combinations. Vortex drag factors are determined and vortex drag coefficients considered. An interference effect is identified between some of these features. For the simple bodies investigated the vortex drag contribution can be considerable.
Technical Paper

Evaluation of Optimal State of Charge Planning Using MPC

2022-03-29
2022-01-0742
Hybrid technologies enable the reduction of noxious tailpipe emissions and conformance with ever-decreasing allowable homologation limits. The complexity of the hybrid powertrain technology leads to an energy management problem with multiple energy sinks and sources comprising the system resulting in a high-dimensional time dependent problem for which many solutions have been proposed. Methods that rely on accurate predictions of potential vehicle operations are demonstrably more optimal when compared to rule-based methodology [1]. In this paper, a previously proposed energy management strategy based on an offline optimization using dynamic programming is investigated. This is then coupled with an online model predictive control strategy to follow the predetermined optimal battery state of charge trajectory prescribed by the dynamic program.
Journal Article

An Estimation of the Effect of Turbulence from the Natural Wind and Traffic on the Cycle-Averaged-Drag Coefficient

2022-03-29
2022-01-0896
A drag coefficient, which is representative of the drag of a car undergoing a particular drive cycle, known as the cycle-averaged-drag coefficient, has been previously developed. It was derived for different drive cycles using mean values for the natural wind. It assumed terrain dependent wind velocities based on the Weibull function, equi-probable wind direction and shear effects. It did not, however, include any effects of turbulence in the natural wind. Some recent research using active vanes in the wind tunnel to generate turbulence has suggested that the effect on drag can be evaluated from the quasi steady wind inputs. On this basis a simple quasi-steady theory for the effect of turbulence on car drag is developed and applied to predicting the cycle-averaged-drag coefficient for a range of cars of different types. The drag is always increased by the turbulence but in all cases is relatively small.
Technical Paper

On the Validity of Steady-State Gasoline Engine Characterization Methodology for Generation of Optimal Calibrations Used in Real World Driving

2022-03-29
2022-01-0579
Vehicle emissions and fuel economy in real-world driving conditions are currently under considerable scrutiny. Key to achieving optimum performance for a given hardware set and control scheme is a calibration that optimizes controller gains such that inputs are scheduled over the operating space to minimize emissions and maximize fuel economy. Generating a suitable calibration requires data that is both precise and accurate, this data is used to generate models that are deployed as part of the calibration optimization process. This paper evaluates the repeatability of typical steady-state measurements used for calibration of engine controllers that will ultimately determine vehicle level emissions for homologation include Real Driving Emissions (RDE). Stabilization requirements as indicated by three different measurements are evaluated and shown to be different within the same experiment, depending on the metric used.
Technical Paper

Quantifying the Information Value of Sensors in Highly Non-Linear Dynamic Automotive Systems

2022-03-29
2022-01-0626
In modern powertrains systems, sensors are critical elements for advanced control. The identification of sensing requirements for such highly nonlinear systems is technically challenging. To support the sensor selection process, this paper proposes a methodology to quantify the information gained from sensors used to control nonlinear dynamic systems using a dynamic probabilistic framework. This builds on previous work to design a Bayesian observer to deal with nonlinear systems. This was applied to a bimodal model of the SCR aftertreatment system. Despite correctly observing the bimodal distribution of the internal Ammonia-NOx Ratio (ANR) state, it could not distinguish which state is the true state. This causes issues for a control engineer who is less interested in how precise a measurement is and more interested in the location within control parameter space. Information regarding the dynamics of the systems is required to resolve the bimodality.
Technical Paper

Towards a Standardized Assessment of Automotive Aerodynamic CFD Prediction Capability - AutoCFD 2: Windsor Body Test Case Summary

2022-03-29
2022-01-0898
To improve the state of the art in automotive aerodynamic prediction using CFD, it is important to compare different CFD methods, software and modelling for standardized test cases. This paper reports on the 2nd Automotive CFD Prediction Workshop for the Windsor body squareback test case. The Windsor model has high quality experimental data available and a simple geometry that allows it to be simulated with limited computational resources. The model is 1 metre long and operates at a Reynolds number of 2.7 million. The original Windsor model did not include wheels, but a second variant was added here with non-rotating wheels. Experimental data is available for integrated forces, surface pressure and wake PIV surveys. Eight standard meshes were provided, covering the two geometry variants, two near wall mesh spacings (relating to wall resolved and wall modelled) and two mesh densities in the wake (relating to RANS and eddy resolving).
Journal Article

A Wind Tunnel Study of the Windsor Body with a Streamlined Tail

2021-04-06
2021-01-0954
The effects of adding a streamlined tail to a simple vehicle shape, represented by the Windsor Body has been investigated in a small scale wind tunnel experiment. The extended tail has a constant width, with a flat lower surface and a constant upper surface taper angle. The tail is truncated in steps to understand the trends in the principal aerodynamic characteristics. The slant surface and the base have been pressure tapped to indicate the contribution to drag and lift from these surfaces. The bodies have been tested over a range of yaw angles and wind tunnel airspeeds. The effects of adding wheels, albeit in a fixed ground experiment, has also been studied. The experimental data for the basic wheel-less body in a squareback configuration and with tapered tails of different length at zero yaw has been compared with an earlier CFD simulation of the same configurations.
Technical Paper

Cycle-Driven Optimization of a Fixed-Structure Controller for Urea Dosing in a Mobile SCR System

2020-11-04
2020-01-5106
A model-based urea-dosing controller has been developed for the selective catalytic reduction (SCR) units on a diesel engine exhaust aftertreatment system (EATS). The SCR units consist of an integrated SCR-coated filter and then followed by a flow-through SCR catalyst. The controller was developed based on an analysis of the data generated from a Millbrook London Transport Bus (MLTB) test cycle fed into a validated model of the SCR-filter and SCR units. The critical system parameters that showed strong correlation with outlet nitrogen oxides (NOx) and ammonia (NH3) emissions were first identified, and then the sensitivity of those parameters was analyzed. The most sensitive system parameters were configured as the controller gain parameters. A proportional controller based on the key parameters with optimized gains settings for the MLTB cycle delivered over a 10% reduction in cumulative NOx emission over the cycle compared to a fixed NH3/NOx ratio (ANR) controller.
Technical Paper

Modification of the Internal Flows of Thermal Propulsion Systems Using Local Aerodynamic Inserts

2020-09-15
2020-01-2039
Modern thermal propulsion systems (TPS) as part of hybrid powertrains are becoming increasingly complex. They have an increased number of components in comparison to traditionally powered vehicles leading to increased demand in packaging requirements. Many of the components in these systems relate to achieving efficiency gains, weight saving and pollutant reduction. This includes turbochargers and diesel or gasoline particulate filters for example and these are known to be very sensitive to inlet boundary conditions. When overcoming packaging requirements, sub-optimal flow distributions throughout the TPS can easily occur. Moreover, the individual components are often designed in isolation assuming relatively flat and artificially quiescent inlet flow conditions in comparison to those they are actually presented with. Thus, some of the efficiency benefits are lost through reduced component aerodynamic efficiency.
Technical Paper

Parametric Study of Reduced Span Side Tapering on a Simplified Model with Wheels

2020-04-14
2020-01-0680
Many modern vehicles have blunt rear end geometries for design aesthetics and practicality; however, such vehicles are potentially high drag. The application of tapering; typically applied to an entire edge of the base of the geometry is widely reported as a means of reducing drag, but in many cases, this is not practical on real vehicles. In this study side tapers are applied to only part of the side edge of a simplified automotive geometry, to show the effects of practical implementations of tapers. The paper reports on a parametric study undertaken in Loughborough University’s Large Wind Tunnel with the ¼ scale Windsor model equipped with wheels. The aerodynamic effect of implementing partial side edge tapers is assessed from a full height taper to a 25% taper in both an upper and lower body configuration. These were investigated using force and moment coefficients, pressure measurements and planar particle image velocimetry (PIV).
Technical Paper

Probabilistic Analysis of Bimodal State Distributions in SCR Aftertreatment Systems

2020-04-14
2020-01-0355
Sensor selection for the control of modern powertrains is a recognised technical challenge. The key question is which set of sensors is best suited for an effective control strategy? This paper addresses the question through probabilistic modelling and Bayesian analysis. By quantifying uncertainties in the model, the propagation of sensor information throughout the model can be observed. The specific example is an abstract model of the slip behaviour of Selective Catalytic Reduction (SCR) DeNOx aftertreatment systems. Due to the ambiguity of the sensor reading, linearization-based approaches including the Extended Kalman Filter, or the Unscented Kalman Filter are not successful in resolving this problem. The stochastic literature suggests approximating these nonlinear distributions using methods such as Markov Chain Monte Carlo (MCMC), which is able in principle to resolve bimodal or multimodal results.
Technical Paper

Streamlined Tails - The Effects of Truncation on Aerodynamic Drag

2020-04-14
2020-01-0673
Significant aerodynamic drag reduction is obtained on a bluff body by tapering the rear body. In the 1930’s it was found that a practical low drag car body could be achieved by cutting off the tail of a streamlined shape. The rear end of a car with a truncated tail is commonly referred to as a Kamm back. It has often been interpreted as implying that the drag of this type of body is almost the same as that for a fully streamlined shape. From a review of the limited research into truncated streamlined tails it is shown in this paper that, while true for some near axisymmetric bodies, it is not the case for many more car-like shapes. For these shapes the drag reduction from an elongated tail varies almost linearly with the reduction in cross section area. A CFD simulation to determine the drag reduction from a truncated streamlined tail of variable length on the simple Windsor Body is shown by way of confirmation.
Journal Article

Experimental Interpretation of Compression Ignition In-Cylinder Flow Structures

2020-04-14
2020-01-0791
Understanding and predicting in-cylinder flow structures that occur within compression-ignition engines is vital if further optimisation of combustion systems is to be achieved. To enable this prediction, fully validated computational models of the complex turbulent flow-fields generated during the intake and compression process are needed. However, generating, analysing and interpreting experimental data to achieve this validation remains a complex challenge due to the variability that occurs from cycle to cycle. The flow-velocity data gathered in this study, obtained from a single-cylinder CI engine with optical access using high-speed PIV, demonstrates that significantly different structures are generated over different cycles, resulting in the mean flow failing to adequately reflect the typical flow produced in-cylinder.
Technical Paper

Towards In-Cylinder Flow Informed Engine Control Strategies Using Linear Stochastic Estimation

2019-04-02
2019-01-0717
Many modern I.C. engines rely on some form of active control of injection, timing and/or ignition timing to help combat tailpipe out emissions, increase the fuel economy and improve engine drivability. However, development of these strategies is often optimised to suit the average cycle at each condition; an assumption that can lead to sub-optimal performance, especially an increase in particulate (PN) emissions as I.C. engine operation, and in-particular its charge motion is subject to cycle-to-cycle variation (CCV). Literature shows that the locations of otherwise repeatable large-scale flow structures may vary by as much 25% of the bore dimension; this could have an impact on fuel break-up and distribution and therefore subsequent combustion performance and emissions.
Technical Paper

Application of Multi-Objective Optimization Techniques for Improved Emissions and Fuel Economy over Transient Manoeuvres

2019-04-02
2019-01-1177
This paper presents a novel approach to augment existing engine calibrations to deliver improved engine performance during a transient, through the application of multi-objective optimization techniques to the calibration of the Variable Valve Timing (VVT) system of a 1.0 litre gasoline engine. Current mature calibration approaches for the VVT system are predominantly based on steady state techniques which fail to consider the engine dynamic behaviour in real world driving, which is heavily transient. In this study the total integrated fuel consumption and engine-out NOx emissions over a 2-minute segment of the transient Worldwide Light-duty Test Cycle are minimised in a constrained multi-objective optimisation framework to achieve an updated calibration for the VVT control. The cycle segment was identified as an area with high NOx emissions.
Technical Paper

Experimental and Computational Study of the Flow around a Stationary and Rotating Isolated Wheel and the Influence of a Moving Ground Plane

2019-04-02
2019-01-0647
This study investigates the aerodynamic behavior of the flow around a rotating and stationary 60% scale isolated wheel, with and without the use of a moving ground plane. The aim of this research was to improve the understanding of the fundamental aerodynamic flow features around a wheel and to examine how rotation and moving ground planes modify these and affect the production of drag. A bespoke rotating wheel rig was designed and wind tunnel tests were performed over a range of pre to post critical Reynolds numbers. Force coefficients were obtained using balance measurements and flow field data were obtained using Particle Image Velocimetry (PIV). The unsteady flow field data generated was used to validate unsteady CFD predictions. These were performed using STAR-CCM+ and a k-ω SST Improved Delayed Detached Eddy Simulation (IDDES) turbulence model. This was seen to outperform other models by capturing an increased amount of finer detailed, high frequency vortical structures.
Technical Paper

Experimental Design for Characterization of Force Transmissibility through Bearings in Electric Machines and Transmissions

2018-06-13
2018-01-1473
With the increasing stringent emissions legislation on ICEs, alongside requirements for enhanced fuel efficiency as key driving factors for many OEMs, there are many research activities supported by the automotive industry that focus on the development of hybrid and pure EVs. This change in direction from engine downsizing to the use of electric motors presents many new challenges concerning NVH performance, durability and component life. This paper presents the development of experimental methodology into the measurement of NVH characteristics in these new powertrains, thus characterizing the structure borne noise transmissibility through the shaft and the bearing to the housing. A feasibility study and design of a new system level test rig have been conducted to allow for sinusoidal radial loading of the shaft, which is synchronized with the shaft’s rotary frequency under high-speed transient conditions in order to evaluate the phenomena in the system.
Journal Article

A Drag Coefficient for Test Cycle Application

2018-04-03
2018-01-0742
The drag coefficient at zero yaw angle is the single parameter usually used to define the aerodynamic drag characteristics of a passenger car. However, this is usually the minimum drag condition and will, for example, lead to an underestimate of the effect of aerodynamic drag on fuel consumption because the important influence of the natural wind has been excluded. An alternative measure of aerodynamic drag should take into account the effect of nonzero yaw angles and a variant of wind-averaged drag is suggested as the best option. A wind-averaged drag coefficient (CDW) is usually derived for a particular vehicle speed using a representative wind speed distribution. In the particular case where the road speed distribution is specified, as for a drive cycle to determine fuel economy, a relevant drag coefficient can be derived by using a weighted road speed.
Technical Paper

Analysis of a Novel Method for Low-Temperature Ammonia Production Using DEF for Mobile Selective Catalytic Reduction Systems

2018-04-03
2018-01-0333
The worldwide introduction of new emission standards and new, more encompassing, legislating cycles have led to a need to increase both a selective catalytic reduction (SCR) system’s capacity and conversion efficiency. To this end, it is important for an SCR system to operate to the extremes of its temperature range which in many systems is currently limited by the temperature at which diesel exhaust fluid (DEF) can easily decompose without the formation of deposits. This paper analyses a new system for low-temperature ammonia provision to the SCR reaction. Ammonia Creation and Conversion Technology (ACCT) uses pressure controlled thermal decomposition of DEF followed by re-formation to form a fluid with greater volatility and the same ammonia density as DEF conforming to ISO 22241. A dosing strategy can then be employed where any combination of DEF or ACCT solution can be used to provide ammonia as a reductant over the whole activity temperature range of a catalyst.
Technical Paper

Towards Optimal Performance of a Thermoelectric Generator for Exhaust Waste Heat Recovery from an Automotive Engine

2018-04-03
2018-01-0050
Thermoelectric generator has very quickly become a hot research topic in the last five years because its broad application area and very attractive features such as no moving parts, low maintenance, variety of thermoelectric materials that total together cover a wide temperature range. The biggest disadvantage of the thermoelectric generator is its low conversion efficiency. So that when design and manufacture a thermoelectric generator for exhaust waste heat recovery from an automotive engine, the benefit of fuel consumption from applying a thermoelectric generator would be very sensitive to the weight, the dimensions, the cost and the practical conversion efficiency. Additionally, the exhaust gas conditions vary with the change of engine operating point. This creates a big challenge for the design of the hot side heat exchanger in terms of optimizing the electrical output of the thermoelectric generator during an engine transient cycle.
X