Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

The Development of Skutterudite-Based Thermoelectric Generators for Vehicles

2018-04-03
2018-01-0788
With the continuing improvements to thermoelectric (TE) materials and systems, their potential for both energy recovery and thermal management is increasingly apparent. Recent developments in materials and notably Skutterudites have allowed materials to be matched much more closely to the working temperatures of a light duty power-train. The choice of TE materials remains a substantial question in the design of a thermoelectric generator (TEG). While the quest for improvements in materials performance continues, the work reported in this paper is characterized by the decision to focus on the refinement of one class of TE materials: Skutterudites. In parallel, the engineering work on the integration of the TE materials into a heat exchanger could continue and be focused on the properties of this class of material. Skutterudites offer the combination of a high working temperature and a competitive electrical output (defined by ZT, the figure of merit).
Technical Paper

Improved Thermoelectric Generator Performance Using High Temperature Thermoelectric Materials

2017-03-28
2017-01-0121
Thermoelectric generator (TEG) has received more and more attention in its application in the harvesting of waste thermal energy in automotive engines. Even though the commercial Bismuth Telluride thermoelectric material only have 5% efficiency and 250°C hot side temperature limit, it is possible to generate peak 1kW electrical energy from a heavy-duty engine. If being equipped with 500W TEG, a passenger car has potential to save more than 2% fuel consumption and hence CO2 emission reduction. TEG has advantages of compact and motionless parts over other thermal harvest technologies such as Organic Rankine Cycle (ORC) and Turbo-Compound (TC). Intense research works are being carried on improving the thermal efficiency of the thermoelectric materials and increasing the hot side temperature limit. Future thermoelectric modules are expected to have 10% to 20% efficiency and over 500°C hot side temperature limit.
X