Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Technical Paper

Theoretical Assessment of Rigs for Accelerated Ash Accumulation in Diesel Particulate Filters

2020-09-15
2020-01-2175
Renewable fuels from different feedstocks can enable sustainable transport solutions with significant reduction in greenhouse gas emissions compared to conventional petroleum-derived fuels. Nevertheless, the use of biofuels in diesel engines will still require similar exhaust gas cleaning systems as for conventional diesel. Hence, the use of diesel particulate filters (DPF) will persist as a much needed part of the vehicle’s aftertreatment system. Combustion of renewable fuels can potentially yield soot and ash with different properties as well as larger amounts of ash compared to conventional fossil fuels. The faster ash build-up and altered ash deposition pattern lead to an increase in pressure drop over the DPF, increase the fuel consumption and call for premature DPF maintenance or replacement. Prolonging the maintenance interval of the DPF for heavy-duty trucks, having a demand for high up-time, is highly desirable.
Technical Paper

The 6-Inlet Single Stage Axial Turbine Concept for Pulse-Turbocharging: A Numerical Investigation

2019-04-02
2019-01-0323
The demand for high-efficiency engines has never been greater as energy consumption and emission reductions are key ingredients for continued competitiveness in today’s transportation industry. A main contributor to recent and future improvement of the internal combustion engine is the gas exchange process. By utilizing the exhaust energy in the turbine stage of an exhaust turbocharger, the pumping work can be improved resulting in significant gains of engine system efficiency. Two main aspects can be identified with regards to the turbine design that are crucial: The level of exhaust pulse separation and turbine efficiency at high pressure ratios. For a pulse-turbocharged engine both aspects need to be considered in order to gain full benefit of the exhaust energy utilization process. In this study, a novel axial turbine stage concept with divided inlets is presented.
Technical Paper

Model-Based Guided Troubleshooting Applied to a Selective Catalytic Reduction System

2018-04-03
2018-01-1355
Troubleshooting trees are traditionally used to guide technicians through the process of identifying the cause of vehicle problems and solving them. These static trees can successfully visualize complex information. However, for modular vehicles, the trees become difficult to create and maintain due to the numerous different configurations of vehicles that can be constructed. These issues can be overcome by using a model-based approach. This paper describes a prototype tool for guided troubleshooting and shows its application to a selective catalytic reduction system used in many heavy vehicles. The troubleshooting tool guides the technician through the troubleshooting process by presenting the most likely fault candidates and recommending the most useful actions to perform. The list of candidates and recommendations are updated continuously to reflect the outcomes of past actions.
Journal Article

Planning Flexible Maintenance for Heavy Trucks using Machine Learning Models, Constraint Programming, and Route Optimization

2017-03-28
2017-01-0237
Maintenance planning of trucks at Scania have previously been done using static cyclic plans with fixed sets of maintenance tasks, determined by mileage, calendar time, and some data driven physical models. Flexible maintenance have improved the maintenance program with the addition of general data driven expert rules and the ability to move sub-sets of maintenance tasks between maintenance occasions. Meanwhile, successful modelling with machine learning on big data, automatic planning using constraint programming, and route optimization are hinting on the ability to achieve even higher fleet utilization by further improvements of the flexible maintenance. The maintenance program have therefore been partitioned into its smallest parts and formulated as individual constraint rules. The overall goal is to maximize the utilization of a fleet, i.e. maximize the ability to perform transport assignments, with respect to maintenance.
Technical Paper

Numerical Investigation of Blockage Effects on Heavy Trucks in Full Scale Test Conditions

2016-04-05
2016-01-1607
The effect of blockage due to the presence of the wind tunnel walls has been known since the early days of wind tunnel testing. Today there are several blockage correction methods available for correcting the measured aerodynamic drag. Due to the shape of the test object, test conditions and wind tunnel dimensions the effect on the flow may be different for two cab variants. This will result in a difference in the drag delta between so-called open-road conditions and the wind tunnel. This makes it more difficult to evaluate the performance of two different test objects when they are both tested in a wind tunnel and simulated in CFD. A numerical study where two different cab shapes were compared in both open road condition, and in a digital wind tunnel environment was performed.
Technical Paper

Aerodynamics of Timber Trucks - a Wind Tunnel Investigation

2015-04-14
2015-01-1562
There is a need for reducing fuel consumption and thereby also reducing CO2 and other emissions in all areas of transportation and the forest industry is no exception. In the particular case of timber trucks special care have to be taken when designing such vehicles; they have to be sturdy and operate in harsh conditions and they are being driven empty half the time. It is well known that the aerodynamic resistance constitutes a significant part of the vehicles driving resistance and four areas in particular, front of vehicle, gap, side/underbody and rear of the vehicle contributes about one quarter each. In order to address these issues a wind tunnel investigation was initiated where a 1:6 scale model of a timber truck was designed to operate in a 3.6 m wind tunnel. The present model resembles a generic timber truck with a flexible design such that different configurations could be tested easily.
Journal Article

Guided Integrated Remote and Workshop Troubleshooting of Heavy Trucks

2014-04-01
2014-01-0284
When a truck or bus suffers from a breakdown it is important that the vehicle comes back on the road as soon as possible. In this paper we present a prototype diagnostic decision support system capable of automatically identifying possible causes of a failure and propose recommended actions on how to get the vehicle back on the road as cost efficiently as possible. This troubleshooting system is novel in the way it integrates the remote diagnosis with the workshop diagnosis when providing recommendations. To achieve this integration, a novel planning algorithm has been developed that enables the troubleshooting system to guide the different users (driver, help-desk operator, and mechanic) through the entire troubleshooting process. In this paper we formulate the problem of integrated remote and workshop troubleshooting and present a working prototype that has been implemented to demonstrate all parts of the troubleshooting system.
Technical Paper

Swirl and Injection Pressure Effect on Post-Oxidation Flow Pattern Evaluated with Combustion Image Velocimetry, CIV, and CFD Simulation

2013-10-14
2013-01-2577
In-cylinder flow pattern has been examined experimentally in a heavy duty optical diesel engine and simulated with CFD code during the combustion and the post-oxidation phase. Mean swirling velocity field and its evolution were extracted from optical tests with combustion image velocimetry (CIV). It is known that the post-oxidation period has great impact on the soot emissions. Lately it has been shown in swirling combustion systems with high injection pressures, that the remaining swirling vortex in the post-oxidation phase deviates strongly from solid body rotation. Solid body rotation can only be assumed to be the case before fuel injection. In the studied cases the tangential velocity is higher in the centre of the piston bowl compared to the outer region of the bowl. The used CIV method is closely related to the PIV technique, but makes it possible to extract flow pattern during combustion at full load in an optical diesel engine.
Technical Paper

In-Cylinder Flow Pattern Evaluated with Combustion Image Velocimetry, CIV, and CFD Calculations during Combustion and Post-Oxidation in a HD Diesel Engine

2013-09-08
2013-24-0064
In-cylinder flow pattern was evaluated during diesel combustion and post-oxidation in a heavy duty optical engine and compared with CFD calculations. In this work the recently developed optical method combustion image velocimetry (CIV) is evaluated. It was used for extracting the flow pattern during combustion and post-oxidation by tracing the glowing soot clouds in the cylinder. The results were compared with CFD sector simulation on the same heavy duty engine geometry. Load was 10 bar IMEP and injection pressure was varied in two steps together with two different swirl levels. The same variations were done in both the optical engine and in the CFD simulations. The main results in this work show that the CIV method and the CFD results catch the same flow pattern trends during combustion and post-oxidation. Evaluation of the CIV technique has been done on large scale swirl vortices and compared with the CFD results at different distances from the piston bowl surface.
Journal Article

The Cooling Airflow of Heavy Trucks - a Parametric Study

2008-04-14
2008-01-1171
In order to maximize the cooling performance of road vehicles one must be familiar with and understand the behavior and character of the underhood flow system. Critical features, such as bottle necks, must be isolated and modified in order to improve the performance. The underhood flow system can be thought of as a network of subsystems, among which no one can be neglected since they are all, in some way, linked. This paper describes the general character of the cooling airflow on Scania heavy trucks. The variation of installation parameters and studies of different design concepts reveals the sensitivity and complexity of the cooling airflow. The results indicate, among other things, that the depth and also the shape of the fan shroud are of great importance. From the results also the influence from flow uniformity on the pressure loss and cooling capacity is obtained.
Technical Paper

The Effect of Displacement on Air-Diluted Multi-Cylinder HCCI Engine Performance

2006-04-03
2006-01-0205
The main benefit of HCCI engines compared to SI engines is improved fuel economy. The drawback is the diluted combustion with a substantially smaller operating range if not some kind of supercharging is used. The reasons for the higher brake efficiency in HCCI engines can be summarized in lower pumping losses and higher thermodynamic efficiency, due to higher compression ratio and higher ratio of specific heats if air is used as dilution. In the low load operating range, where HCCI today is mainly used, other parameters as friction losses, and cooling losses have a large impact on the achieved brake efficiency. To initiate the auto ignition of the in-cylinder charge a certain temperature and pressure have to be reached for a specific fuel. In an engine with high in-cylinder cooling losses the initial charge temperature before compression has to be higher than on an engine with less heat transfer.
Technical Paper

High Performance Planetary Gears for Heavy Duty Automotive Transmissions

2005-11-01
2005-01-3644
Planetary gears in heavy truck gearboxes are normally manufactured by forging a blank, turning, hobbing, shaving and heat-treatment followed by grinding. Due to the size of the gear the net shape capability of PM methods can be cost effective alternatively to conventional manufacturing. Warm compaction and surface densification are two PM methods to reach high density and thereby high strength and fatigue properties. Typical characteristics for PM gears manufactured by these methods are outlined.
Technical Paper

Transient Emission Predictions With Quasi Stationary Models

2005-10-24
2005-01-3852
Heavy trucks contribute significantly to the overall air pollution, especially NOx and PM emissions. Models to predict the emissions from heavy trucks in real world on road conditions are therefore of great interest. Most such models are based on data achieved from stationary measurements, i.e. engine maps. This type of “quasi stationary” models could also be of interest in other applications where emission models of low complexity are desired, such as engine control and simulation and control of exhaust aftertreatment systems. In this paper, results from quasi stationary calculations of fuel consumption, CO, HC, NOx and PM emissions are compared with time resolved measurements of the corresponding quantities. Measurement data from three Euro 3-class engines is used. The differences are discussed in terms of the conditions during transients and correction models for quasi stationary calculations are presented. Simply using engine maps without transient correction is not sufficient.
Technical Paper

Comparison Between In-Cylinder PIV Measurements, CFD Simulations and Steady-Flow Impulse Torque Swirl Meter Measurements

2003-10-27
2003-01-3147
In-cylinder flow measurements, conventional swirl measurements and CFD-simulations have been performed and then compared. The engine studied is a single cylinder version of a Scania D12 that represents a modern heavy-duty truck size engine. Bowditch type optical access and flat piston is used. The cylinder head was also measured in a steady-flow impulse torque swirl meter. From the two-dimensional flow-field, which was measured in the interval from -200° ATDC to 65° ATDC at two different positions from the cylinder head, calculations of the vorticity, turbulence and swirl were made. A maximum in swirl occurs at about 50° before TDC while the maximum vorticity and turbulence occurs somewhat later during the compression stroke. The swirl centre is also seen moving around and it does not coincide with the geometrical centre of the cylinder. The simulated flow-field shows similar behaviour as that seen in the measurements.
Technical Paper

Early Swedish Hot-Bulb Engines - Efficiency and Performance Compared to Contemporary Gasoline and Diesel Engines

2002-03-04
2002-01-0115
“Hot Bulb engines” was the popular name of the early direct injected 2-stroke oil engine, invented and patented by Carl W. Weiss 1897. This paper covers engines of this design, built under license in Sweden by various manufacturers. The continuous development is demonstrated through examples of different combustion chamber designs. The material is based on official engine performance evaluations on stationary engines and farm tractors from 1899 to 1995 made by the National Machinery Testing Institute in Sweden (SMP). Hot-bulb, diesel and spark ignited engines are compared regarding efficiency, brake mean effective pressure and specific power (power per displaced volume). The evaluated hot-bulb engines had a fairly good efficiency, well matching the contemporary diesel engines. At low mean effective pressures, the efficiency of the hot-bulb engines was even better than that of subsequent diesel engines.
Technical Paper

CFD Studies of Combustion and In-Cylinder Soot Trends in a DI Diesel Engine - Comparison to Direct Photography Studies

2000-06-19
2000-01-1889
The main objective of this work is to develop a CFD model for studies of combustion and in-cylinder soot trends in a single cylinder DI diesel engine based on the Scania 14 liter V8 engine. The evaluation of the model is made with respect to ignition, cylinder pressure, heat release, onset of diffusion controlled combustion, liquid fuel spray penetration, in-cylinder soot distribution and exhaust soot level. The simulation results are compared to direct photography images and two-color calculations of temperature and soot distribution in a corresponding optical access test engine. This comparison shows good agreement concerning diffusion flame onset, liquid penetration, rate of heat release and local temperature distribution. Moreover, the prediction of in-cylinder soot distribution after end of injection also agrees well with the two-color calculation. To validate the model, the simulation is repeated for three different sets of operating conditions.
Technical Paper

Wavelet Analysis of In-Cylinder LDV Velocity Measurements

1996-10-01
961921
The object of this paper is to present a new way of analyzing in-cylinder velocity measurements. The technique is called Discrete Wavelet Transform (DWT) and it is similar to Fast Fourier Transform (FFT) with one important difference it is possible to obtain both time localized and frequency resolved information. This paper demonstrates the use of DWT calculations on in-cylinder LDV flow measurements for different combustion geometries in a natural gas converted truck engine. It will furthermore provide some information about how DWT can be used with in-cylinder measurements in the future.
Technical Paper

Combustion Chambers for Natural Gas SI Engines Part I: Fluid Flow and Combustion

1995-02-01
950469
The most economical way to convert truck and bus DI-diesel engines to natural gas operation is to replace the injector with a spark plug and modify the combustion chamber in the piston crown for spark ignition operation. The modification of the piston crown should give a geometry well suited for spark ignition operation with the original swirling inlet port. Ten different geometries were tried on a converted VOLVO TD102 engine and a remarkably large difference in the rate of combustion was noted between the chambers. To find an explanation for this difference a cycle resolved measurement of the in-cylinder mean velocity and turbulence was performed with Laser Doppler Velocimetry (LDV). The results show a high correlation between in cylinder turbulence and rate of heat release in the main part of combustion.
X