Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Optical Investigation on the Combustion Process Differences between Double-Pilot and Closely-Coupled Triple-Pilot Injection Strategies in a LD Diesel Engine

2019-01-15
2019-01-0022
The combustion processes of three injection strategies in a light-duty (LD) diesel engine at a medium load point are captured with a high speed video camera. A double-pilot/main/single-post injection strategy representative of a LD Euro 6 calibration is considered as the reference. There is a modest temporal spacing (dwell) after the first pilot (P1) and second pilot (P2). A second strategy, “A,” adds a third pilot (P3). The dwell after both P2 and P3 are several times shorter than in the reference strategy. A third strategy, “B,” further reduces all dwells. Each injection has its own associated local peak in the heat release rate (HRR) following some ignition delay. Between these peaks lie local minima, or dips. In all three cases, the fuel from P1 combusts as a propagating premixed flame. For all strategies, the ignition of P2 primarily occurs at its interface with the existing combustion regions.
Technical Paper

Effects of Injection Strategies on Fluid Flow and Turbulence in Partially Premixed Combustion (PPC) in a Light Duty Engine

2015-09-06
2015-24-2455
Partially premixed combustion (PPC) is used to meet the increasing demands of emission legislation and to improve fuel efficiency. With gasoline fuels, PPC has the advantage of a longer premixed duration of the fuel/air mixture, which prevents soot formation. In addition, the overall combustion stability can be increased with a longer ignition delay, providing proper fuel injection strategies. In this work, the effects of multiple injections on the generation of in-cylinder turbulence at a single swirl ratio are investigated. High-speed particle image velocimetry (PIV) is conducted in an optical direct-injection (DI) engine to obtain the turbulence structure during fired conditions. Primary reference fuel (PRF) 70 (30% n-heptane and 70% iso-octane) is used as the PPC fuel. In order to maintain the in-cylinder flow as similarly as possible to the flow that would exist in a production engine, the quartz piston retains a realistic bowl geometry.
Technical Paper

High-Speed Particle Image Velocimetry Measurement of Partially Premixed Combustion (PPC) in a Light Duty Engine for Different Injection Strategies

2015-09-06
2015-24-2454
It has been proven that partially premixed combustion (PPC) has the capability of high combustion efficiency with low soot and NOx emissions, which meet the requirements of increasingly restricted emission regulations. In order to obtain more homogenous combustion and longer ignition delay in PPC, different fuel injection strategies were employed which could affect the fuel air mixing and control the combustion. In the present work, a light duty optical diesel engine was used to conduct high speed particle image velocimetry (PIV) for single, double and triple injections with different timings. A quartz piston and a cylinder liner were installed in the Bowditch configuration to enable optical access. The geometry of the quartz piston crown is based on the standard diesel combustion chamber design for this commercial passenger car engine, including a re-entrant bowl shape.
X