Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Numerical Optimization of Compression Ratio for a PPC Engine running on Methanol

2019-12-19
2019-01-2168
Partially premixed combustion (PPC) has shown to produce high gross indicated efficiencies while yielding lower pollutant emissions, such as oxides of nitrogen and soot, than conventional diesel combustion. Gasoline fuels with a research octane number (RON) of 60-70 have been proposed as optimal for PPC as they balance the trade-off between ensuring good combustion stability at low engine loads and avoiding excessive peak pressure rise rates at high loads. However, measures have to be taken when optimizing the engine operating parameters to avoid soot emissions. In contrast, methanol has a much lower propensity for soot formation. However, due to a higher RON of methanol the required intake temperature is higher for the same engine compression ratio to ensure auto-ignition at an appropriate timing. Increasing the compression ratio allows a lower intake temperature and improves combustion stability as well as engine brake efficiency.
Technical Paper

Effects of In-Cylinder Flow Structures on Soot Formation and Oxidation in a Swirl-Supported Light-Duty Diesel Engine

2019-09-09
2019-24-0009
In this paper, computation fluid dynamics (CFD) simulations are performed to describe the effect of in-cylinder flow structures on the formation and oxidation of soot in a swirl-supported light-duty diesel engine. The focus of the paper is on the effect of swirl motion and injection pressure on late cycle soot oxidation. The structure of the flow at different swirl numbers is studied to investigate the effect of varying swirl number on the coherent flow structures. These coherent flow structures are studied to understand the mechanism that leads to efficient soot oxidation in late cycle. Effect of varying injection pressure at different swirl numbers and the interaction between spray and swirl motions are discussed. The complexity of diesel combustion, especially when soot and other emissions are of interest, requires using a detailed chemical mechanism to have a correct estimation of temperature and species distribution.
Technical Paper

Comparison of Kinetic Mechanisms for Numerical Simulation of Methanol Combustion in DICI Heavy-Duty Engine

2019-04-02
2019-01-0208
The combustion process in a homogeneous charge compression ignition (HCCI) engine is mainly governed by ignition wave propagation. The in-cylinder pressure, heat release rate, and the emission characteristics are thus largely driven by the chemical kinetics of the fuel. As a result, CFD simulation of such combustion process is very sensitive to the employed reaction mechanism, which model the real chemical kinetics of the fuel. In order to perform engine simulation with a range of operating conditions and cylinder-piston geometry for the design and optimization purpose, it is essential to have a chemical kinetic mechanism that is both accurate and computational inexpensive. In this paper, we report on the evaluation of several chemical kinetic mechanisms for methanol combustion, including large mechanisms and skeletal/reduced mechanisms.
Technical Paper

Automated IC Engine Model Development with Uncertainty Propagation

2011-04-12
2011-01-0237
This paper describes the development of a novel data model for storing and sharing data obtained from engine experiments, it then outlines a methodology for automatic model development and applies it to a state-of-the-art engine combustion model (including chemical kinetics) to reduce corresponding model parameter uncertainties with respect engine experiments. These challenges are met by adopting the latest developments in the semantic web to create a shared data model resource for the IC engine development community. The relevant data can be extracted and then used to set-up simulations for parameter estimation by passing it to the relevant application models. A methodology for incorporating experimental and model uncertainties into the model optimization procedure is presented.
Technical Paper

Two-Dimensional Temperature Measurements in Diesel Piston Bowl Using Phosphor Thermometry

2009-09-13
2009-24-0033
Phosphor thermometry was used during fuel injection in an optical engine with the glass piston of reentrant type. SiO2 coated phosphor particle was used for the gas-phase temperature measurements, which gave much less background signal. The measurements were performed in motored mode, in combustion mode with injection of n-heptane and in non-combustion mode with injection of iso-octane. In the beginning of injection period, the mean temperature of each injection cases was lower than that of the motored case, and temperature of iso-octane injection cases was even lower than that of n-heptane injection cases. This indicates, even if vaporization effect seemed to be the same at both injection cases, the effect of temperature decrease changed due to the chemical reaction effect for the n-heptane cases. Chemical reaction seems to be initiated outside of the fuel liquid spray and the position was moving towards the fuel rich area as the time proceeds.
Technical Paper

A Predictive Real Time NOx Model for Conventional and Partially Premixed Diesel Combustion

2006-10-16
2006-01-3329
A previously presented robust and fast diagnostic NOx model was modified into a predictive model. This was done by using simple yet physically-based models for fuel injection, ignition delay, premixed heat release rate and diffusion combustion heat release rate. The model can be used both for traditional high temperature combustion and for high-EGR low temperature combustion. It was possible to maintain a high accuracy and calculation speed of the NOx model itself. The root mean square of the relative model error is 16 % and the calculation speed is around one second on a PC. Combustion characteristics such as ignition delay, CA50 and the general shape of the heat release rate are well predicted by the combustion model. The model is aimed at real time NOx calculation and optimization in a vehicle on the road.
X