Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Gasoline - Ignition Improver - Oxygenate Blends as Fuels for Advanced Compression Ignition Combustion

2013-04-08
2013-01-0529
Mixing is inhibited both by the relatively low volatility of conventional diesel fuel and the short premixing time due to high fuel reactivity (i.e. cetane number (CN)). Consequently, in this research two promising oxygenates which can be produced from 2nd generation biomass -ethanol from cellulose and anisole from lignin - will be blended to gasoline, further doped with ignition improver. This will result in a diesel-like CN, but with a higher gasoline-like volatility. There is, however, also a more practical motivation for this study. In Europe, the dieselization trend is resulted in a growing excess of gasoline, which is currently largely exported to the USA at additional transport costs. Boosting the cetane number of gasoline into the diesel range with ignition improvers is a promising route to more efficiently consume European refinery products within Europe.
Journal Article

The Effect of the Position of Oxygen Group to the Aromatic Ring to Emission Performance in a Heavy-Duty Diesel Engine

2012-09-10
2012-01-1697
In this paper, the soot-NOx trade-off and fuel efficiency of various aromatic oxygenates is investigated in a modern DAF heavy-duty diesel engine. All oxygenates were blended to diesel fuel such that the blend oxygen concentration was 2.59 wt.-%. The oxygenates in question, anisole, benzyl alcohol and 2-phenyl ethanol, have similar heating values and cetane numbers, but differ in the position of the functional oxygen group relative to the aromatic ring. The motivation for this study is that in lignin, a widely available and low-cost biomass feedstock, similar aromatic structures are found with varying position of the oxygen group to the aromatic ring. From the results it becomes clear that both the soot-NOx trade-off and the volumetric fuel economy (i.e. ml/kWh) is improved for all oxygenates in all investigated work points.
X