Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Acoustic Analysis of a Tractor Muffler

2017-06-05
2017-01-1791
Parametric model of a production hybrid (made up of reactive and dissipative elements) muffler for tractor engine is developed to compute the acoustic Transmission Loss (TL). The objective is to simplify complex muffler acoustic simulations without any loss of accuracy, robustness and usability so that it is accessible to all product development engineers and designers. The parametric model is a 3D Finite Element Method (FEM) based built in COMSOL model builder which is then converted into a user-friendly application (App) using COMSOL App builder. The uniqueness of the App lies in its ability to handle not only wide range of parametric variations but also variations in the physics and boundary conditions. This enables designers to explore various design options in the early design phase without the need to have deep expertise in a specific simulation tool nor in numerical acoustic modeling.
Technical Paper

Analytical Design and Development for Automobile Powertrain Mounts Using Low Fidelity Calculators

2016-02-01
2016-28-0185
The excitation to a vehicle is from two sources, road excitation and powertrain excitation. Vehicle Suspension is designed to isolate the road excitation coming to passenger cabin. Powertrain mounts play a vital role in isolating the engine excitation. The current study focuses on developing an analytical approach using Low-Fidelity computer programs to design the Powertrain Mount layout and stiffness during the initial stage of product development. Three programs have been developed as a part of this study that satisfy the packaging needs, NVH requirements and static load bearing requirements. The applications are capable of providing the Kinetic Energy Distribution and Static Analysis (Powertrain Enveloping and Mount Durability) for 3-point and 4-point mounting systems and the ideal mount positions and stiffness for 3-point mounting systems.
Technical Paper

A Particle Swarm Optimization Tool for Decoupling Automotive Powertrain Torque Roll Axis

2014-04-01
2014-01-1687
A typical powertrain mount design process starts with performing the system calculations to determine optimum mount parameters, viz. position, orientation and stiffness values to meet the desired NVH targets. Therefore, a 6 degrees of freedom lumped parameter system of powertrain and mounts is modelled in Matlab®. The approach is to decouple the torque roll axis mode from the remaining five rigid body modes so that the response to the torque pulses is predominantly ‘oscillations about Torque Roll Axis’. This is achieved by optimizing the above mount parameters within specified constraints so that ‘Rotation about the torque roll axis’ is one of the natural modes of vibration. The tool developed here uses ‘Particle Swarm Optimization(PSO) algorithm’ because of its ease of implementation and better convergence to the solution. The algorithm is programmed in TK solver®.
X