Refine Your Search

Topic

Author

Search Results

Technical Paper

Investigation on Fuel Economy Benefits by Lubrication System Optimization for a High Performance 2.2 L Diesel Engine

2024-04-09
2024-01-2415
Lubrication systems play a major role not only in the durability of modern IC engines but also in performance and emissions. The design of the lubrication system influences the brake thermal efficiency of the engine. Also, efficient lubrication reduces the engine's CO2 emissions significantly. Thus, it is critical for an IC engine to have a well-designed lubrication system that performs efficiently at all engine operating conditions. The conventional lubrication system has a fixed-displacement oil pump that can cater to a particular speed range. However, a fully variable displacement oil pump can cater to a wide range of speeds, thereby enhancing the engine fuel efficiency as the oil flow rates can be controlled precisely based on the engine speed and load conditions. This paper primarily discusses the optimization of a lubrication system with a Variable Displacement Oil Pump (VDOP) and a map-controlled Piston Cooling Jet (PCJ) for a passenger car diesel engine.
Technical Paper

Integration of Seat-Belt Web-Guide Functionality in Trim Part

2024-01-16
2024-26-0018
Restraint systems in automotives are inevitable for the safety of passengers. Seat belts are one such restraint system in automotives that prevent drivers and passengers from being injured during a crash by restraining them back. Seatbelt on automotives has interface with Body-in-white (henceforth called as BIW) and Trim parts in-order to serve its purpose at vehicle level. One such interface part of seat belt is the web guide, which assists and ensures the nylon web’s smooth motion at different seat track positions. Web-guides on automotives ensure the flawless motion of seat belt web at pillar trim areas. In this paper, we are discussing alternate ways of assisting the seat belt web without the web-guide as a separate part. In-order to assist and ensure the motion of nylon web in its trajectory, we have extended the flange of the pillar trim involved.
Technical Paper

Investigation of Gasket Sealing Behavior of an All-Aluminum High Performance, New Generation Passenger Car Engine under Extreme Engine Operating Conditions

2024-01-16
2024-26-0033
The increasing demand for higher specific power, fuel economy, Operating Costs as well as meeting global emission norms have become the driving factors of today’s product development in the automotive market. Substitution of high-density materials and more precise adjustment of material parameters help in significant weight decrease, but it is accompanied by undesirable cost increase and manufacturing complexity. This becomes a challenge for every automotive engineer to balance the above parameters to make a highly competitive design. This work is a part of the Design and Development of 2.2 L, 4 Cylinder TCIC Diesel Engine for a whole new vehicle platform, concentrated on automotive passenger car operation. This paper explains the selection of a suitable cylinder head gasket technology for a lightweight engine that acts as a sealing interface between the cylinder block and cylinder head.
Technical Paper

Effect of Temperature on Synchronizer Ring Performance

2023-11-10
2023-28-0054
The brass synchronizers are not resistant to abusive conditions of gearbox operations, but they are very durable and cheap when used on their favorable material property working limit. The main failure which can occur in the gearbox due to the synchronizer is crash noise. During gear shifting the gear crash will create high discomfort for the driver and must apply high force to change the gears. The main factors which contribute to the crash phenomenon are the insufficient coefficient of friction, high drag in the system, and high wear rate of the synchronizer rings before the intended design life of the synchronizer. The brass synchronizers were tested on the SSP-180, ZF synchronizer test rig to know the effect of the synchronizer performance parameters like the coefficient of friction, sleeve force, slipping time as well as durability parameters like wear rate when the operating temperature of the oil is changed.
Technical Paper

Effect of Rolling Direction and Gauge Length on the Mechanical Properties of S460MC High Strength Low Alloy Steel

2023-05-25
2023-28-1329
Tensile Testing is one of the most used and highly reliable method of mechanical testing to evaluate the tensile properties of the material. However, there is a large scope for discussing the behavior of the metals based on the direction of rolling and the tensile specimen size used for testing. This paper discusses the variation observed in the tensile values along the direction of rolling and traverse to the direction of rolling for S460MC. It also evaluates the variation observed in the values based on the various gauge lengths (GL) commonly used in testing as per international standards (80mm, 50mm and 25mm GL). It is observed that perpendicular to the direction of rolling, the Yield and Tensile strength of the material increase marginally while the Elongation percentage (%E) decreases by a small margin irrespective of the gauge length taken into consideration.
Technical Paper

Effect of Varying Levels of Work Hardening and Bake Hardening on the Mechanical Properties of Dual Phase Steels

2023-05-25
2023-28-1331
In most cases, the properties of a metal are evaluated in their as rolled condition, prior to any work hardening or bake hardening. But in the Automotive World, these steels get work hardened during the forming process and bake hardened in the paint shop. The goal of this paper is to evaluate the variations in the performance of Dual Phase (DP) steels and understand the most optimized method of testing and property generation. This method can then be used to extrapolate to real automotive components. Dual Phase Steels or DP Steels contain a mixture of Ferrite & Martensite from which they derive their name. They are a part of the advanced high strength and ultra-high strength steels steel family according to World Auto Steels. The Ferrite phase, with its iron content contributes to the material displaying an increased level of ductility whilst, the martensitic phase provides the steel with increased mechanical strength.
Technical Paper

High-Fidelity CAE Simulation of 4-Cylinder 4-Stroke Hollow Assembled Camshaft under Multi Axial Load

2023-04-11
2023-01-0163
The major area in which the automotive manufacturers are working is to produce high-performance vehicles with lighter weight, higher fuel economy and lower emissions. In this regard, hollow camshafts are widely used in modern diesel and gasoline engines due to their inherent advantages of less rotational inertia, less friction, less weight and better design flexibility. However, the dynamic loads of chain system, valve train and fuel injection pump (if applicable) makes it challenging to design over-head hollow camshafts with the required factor of safety (FOS). In the present work, high-fidelity FE model of a hollow camshaft assembly is simulated to evaluate the structural performance for assembly loads, valve train operating loads, fuel injection pump loads and chain system loads. The investigation is carried out in a high power-density (70 kW/lit) 4-cylinder in-line diesel engine.
Technical Paper

Random Vibration Fatigue Evaluation of Plastic Components in Automotive Engines

2022-03-29
2022-01-0765
Light weighting in modern automotive powertrains call for use of plastics (PP, PA66GF35) for cam covers, intake manifolds and style covers, and noise encapsulation covers. Conventionally, in early stage of design these components are evaluated for static assembly loads & gasket compression loads at component level. However, engine dynamic excitations which are random in nature make it challenging to evaluate these components for required fatigue life. In this paper, robust methodology to evaluate the fatigue life of engine style cover assembly for random vibration excitations is presented. The investigation is carried out in a high power-density 4-cylinder in-line diesel engine. The engine style cover (with Polyurethane foam) is mounted on cam cover and the intake manifold using steel studs and rubber isolators to suppress the radiated noise.
Technical Paper

Simulation of Differential Stroke (D-Cycle) Engine Technology for Agricultural Tractor

2022-03-29
2022-01-0389
Model based calibration is extensively used by the automotive OEMs (Original Equipment manufacturers) because of its correlation accuracy with test data and freezing the operating parameters such as injection timings, EGR rates, fuel quantity etc. The prediction of Brake specific Fuel consumption (BSFC), Exhaust and intake temperatures are very close to test data. The prediction of Brake specific NOx is directionally reliable with acceptable tolerance.
Technical Paper

Conceptual Design Proposal for Adapting D-Cycle Technology in Agricultural Tractor Engine

2022-03-29
2022-01-0600
This paper reviews application of D-Cycle technology to compact tractor diesel engine for improving efficiency & power. The study considers design challenges that are presented for accommodating D-Cycle technology in engine. The paper also covers resolving those challenges with established technical solutions. The study focuses on modifying conventional compact 4-stroke diesel engine with the intention of keeping design changes to a minimum level for incorporating differential stroke technology. Designing of vertically splitting lightweight piston crown which can be smoothly engaged and separated from main piston body without any impact, stem rod which connects piston crown with rocker arm, split connecting rod and rocker arm which is actuated by extra actuating camshaft in addition of present valvetrain camshaft, are covered. Lubrication of additional actuating camshaft is done by extending existing oil galleries.
Technical Paper

Integrated Exhaust Manifold Design & Optimization of it through HCF and LCF Simulations for a BS6 Compliant Diesel Engine

2021-10-01
2021-28-0168
This paper discusses design and optimization process for the integration of exhaust manifold with turbocharger for a 3 cylinder diesel engine, simulation activities (CAE and CFD), and validation of manifold while upgrading to meet current BS6 emissions. Exhaust after-treatment system needs to be upgraded from a simple DOC (Diesel Oxidation Catalyst) to a complex DOC+sDPF (Selective catalytic reduction coated on Diesel Particulate Filter) to meet the BS6 emission norms for this engine. To avoid thermal losses and achieve a faster light-off temperature in the catalyst, the exhaust after-treatment (EATS) system needs to be placed close to the engine - exactly at the outlet of the turbocharger. This has given to challenges in packaging the EATS. The turbocharger in case of BS4 is placed near the 2nd cylinder of the engine, but this position will not allow placing the BS6 EATS.
Technical Paper

A Holistic Approach of Developing New High Strength Cast Iron for Weight Optimization

2021-09-22
2021-26-0244
Foundry industries are very much familiar and rich experience of producing ferrous castings mainly Flake Graphite (FG) and Spheroidal Graphite (SG) cast iron. Grey cast iron material is mainly used for dampening applications and spheroidal graphite cast iron is used in structural applications wherein high strength and moderate ductility is necessary to meet the functional requirements. However, both types of cast iron grades are very much suitable in terms of manufacturing in an economical way. Those grades are commercially available and being consumed in various industries like automotive, agriculture etc, High strength SG Iron grades also being manufactured by modifying the alloying elements with copper, chromium, manganese andcobalt. but it has its own limitation of reduction in elongation when moving from low to high strength SG iron material. To overcome this limitation a new cast iron developed by modifying the chemical composition.
Technical Paper

A Case Study of Compressor Surge Related Noise on Turbocharged 2.0-L Gasoline Engine

2021-09-22
2021-26-0282
Till recently supercharging was the most accepted technique for boost solution in gasoline engines. Recent advents in turbochargers introduced turbocharging technology into gasoline engines. Turbocharging of gasoline engines has helped in powertrains with higher power density and less overall weight. Along with the advantages in performance, new challenges arise, both in terms of thermal management as well as overall acoustic performance of powertrains. The study focuses mainly on NVH aspects of turbocharging of gasoline engines. Compressor surge is a most common phenomenon in turbochargers. As the operating point on the compressor map moves closer to the surge line, the compressor starts to generate noise. The amplitude and frequency of the noise depends on the proximity of the operating point to the surge line. The severity of noise can be reduced by selecting a turbocharger with enough compressor surge margin.
Technical Paper

Effect of Steel Wheel Disc Hat Profile and Vent Hole Shape on Fatigue Life in Cornering Test

2021-04-06
2021-01-0934
Automotive steel wheel is a critical component for human safety. For validating steel wheel various tests will be performed at component and vehicle level. Cornering test performed at vehicle level is one of the tests, where wheel will be validated for high cornering loads. Cornering test performed at vehicle level consists of three different events i.e., rotations of vehicle in track1, rotations of vehicle track 2 and rotations of vehicle in track3. As wheel will experience different loading in each of the events of cornering test, correlating the virtual Finite Element Analysis (FEA) with physical test is quite challenging. If in FEA we can predict the damage and life very near to the physical validation, we can create a safe wheel for high cornering loads without any test concerns. Vent hole shape and Hat depth are two important aspects in wheel disc design. Vent hole shape and size will influence the heat dissipation of braking.
Technical Paper

Optimization of Clutch Characteristics to Improve the Launch Performance of a Sports-Utility Vehicle

2020-09-25
2020-28-0481
Vehicles with manual transmission are still the most preferred choice in emerging markets like India due to their benefits in cost, simplicity and fuel economy. However, the ever-increasing vehicle population and traffic congestion demand a smooth clutch operation and a comfortable launch behaviour of any manual transmission vehicle. In the present work, the launch performance of a sports-utility vehicle (SUV) equipped with dual mass flywheel (DMF) and self-adjusting technology (SAT) clutch could be improved significantly by optimizing the clutch system. The vehicle was observed to be having a mild judder during clutch release (with 0% accelerator pedal input) in a normal 1st gear launch in flat road conditions. An extensive experimental measurement at the vehicle level could reveal the launch judder is mainly due to the 1st order excitation forces created by the geometrical inaccuracy of the internal parts of the clutch system.
Technical Paper

A Unique Methodology to Evaluate the Structural Robustness of a Dual-Mass Flywheel under Real-World Usage Conditions

2020-09-25
2020-28-0475
Dual mass flywheel (DMF) is an excellent solution to improve the noise, vibration and harshness (NVH) characteristic of any vehicle by isolating the driveline from the engine torsional vibrations. For the same reason, DMFs are widely used in high power-density diesel and gasoline engines. However, the real-world usage conditions pose a lot of challenges to the structural robustness of the DMF. In the present work, a new methodology is developed to evaluate the robustness of a DMF fitted in a compact sports utility vehicle (SUV) with rear-wheel drive architecture. The abuse conditions (mis-gear, sudden braking, etc) in the real-world usage could lead to a sudden engine stall leading to an abnormally high angular deceleration of the driveline components. The higher rate of deceleration coupled with the higher rotational moment of inertia of the systems might end up in introducing a significantly high impact torque on the DMF.
Technical Paper

Optimization of the Bearing Oil Supply Concept of a High Power-Density Diesel Engine to Minimize Oil Pump Friction

2020-09-25
2020-28-0338
Reducing the mechanical friction of internal combustion engines could play a major role in improving the brake specific fuel consumption (BSFC). Hence, it is important to reduce the friction at every component and sub-system level. In the present work, the oil pump friction of a 1.5 liter 4-cylinder diesel engine is optimized by reducing the oil pump displacement volume by 20%. This could be achieved by adopting an optimized oil supply concept which could reduce the oil leakage through the main bearings and connecting rod bearings. A 1-dimensional oil flow simulation was carried out to predict the oil flow distribution across the engine for different speeds. The results indicate that the oil leakage through the main bearings and connecting rod bearings contribute to ~25% of the total oil flow requirement of the engine. In a conventional oil supply concept, the big-end bearing of each connecting rod is connected to the adjacent main bearing through an internal oil hole.
Technical Paper

EGR Flow Control Strategy for a Smaller Capacity Diesel Engine Using a Phase Shifting Chamber

2020-04-14
2020-01-1358
Exhaust gas recirculation (EGR) is an effective strategy to control NOx emissions in diesel engines. EGR reduces NOx through lowering the oxygen concentration in the combustion chamber, as well as through heat absorption. The stringent emission norms have forced diesel engines to further improve thermal efficiency and reduce nitrogen oxides (NOx). Throttle control is adopted in diesel intake system to control the EGR & fresh charge flow and to meet the emissions norms. In three or lesser cylinder. diesel engines, predominantly single and two-cylinder diesel engines, there is a higher possibility of the exhaust gas reaching the intake throttle and Particulate matter getting deposited on the throttle body. This can significantly affect the idling stability and intake restriction in prolonged usage. In idling condition, the clogged throttle body stagnates the fresh charge from entering the cylinder. The work aims at the study of flow pattern for EGR reaching the throttle body.
Technical Paper

Design and Development of an Ultra-Low Friction and High Power-Density Diesel for the Indian Market

2020-04-14
2020-01-0834
This paper explains the methodology to design a high power-density diesel engine capable of 180 bar peak firing pressure yet achieving the lowest level of mechanical friction. The base engine architecture consists of an 8 mm crank-offset which is an optimized value to have the lowest piston side forces. The honing specification is changed from a standard plateau honing to an improved torque plate slide honing with optimized surface finish values. The cumulative tangential force of the piston rings is reduced to an extreme value of 28.5 N. A rectangular special coated top ring and a low-friction architecture oil ring are used to reduce the friction without increasing the blow-by and oil consumption. A special low-friction coating is applied on the piston skirt in addition to the optimized skirt profile to have reduced contact pressure. The piston pin is coated with diamond-like carbon (DLC) coating to have the lowest friction.
Technical Paper

A Holistic Approach to Develop a Modern High-Power Density Diesel Engine to Meet Best-in-Class NVH Levels

2020-04-14
2020-01-0406
The ever-increasing customer expectations put a lot of pressure on car manufacturers to constantly reduce the noise, vibration, and harshness (NVH) levels. This paper presents the holistic approach used to achieve best-in-class NVH levels in a modern high-power density 1.5 lit 4-cylinder diesel engine. In order to define the NVH targets for the engine, global benchmark engines were analysed with similar cubic capacity, power density, number of cylinders and charging system. Moreover, a benchmark diesel engine (considered as best-in-class in NVH) was measured in a semi-anechoic chamber to define the engine-level NVH targets of the new engine. The architecture selection and design of all the critical components were done giving due consideration to NVH behaviour while keeping a check on the weight and cost.
X