Refine Your Search

Topic

Author

Search Results

Technical Paper

Integration of Seat-Belt Web-Guide Functionality in Trim Part

2024-01-16
2024-26-0018
Restraint systems in automotives are inevitable for the safety of passengers. Seat belts are one such restraint system in automotives that prevent drivers and passengers from being injured during a crash by restraining them back. Seatbelt on automotives has interface with Body-in-white (henceforth called as BIW) and Trim parts in-order to serve its purpose at vehicle level. One such interface part of seat belt is the web guide, which assists and ensures the nylon web’s smooth motion at different seat track positions. Web-guides on automotives ensure the flawless motion of seat belt web at pillar trim areas. In this paper, we are discussing alternate ways of assisting the seat belt web without the web-guide as a separate part. In-order to assist and ensure the motion of nylon web in its trajectory, we have extended the flange of the pillar trim involved.
Technical Paper

Experimental Investigation of Efficiency Enhancement of Manual Transmission Gearbox Synchronizer Rings for the Enrichment of Gearshift Quality

2023-11-10
2023-28-0114
In developing countries, manual transmissions are leading the market due to their efficiency and low cost. In a manual transmission, the synchronizers play a vital role in defining the gear shift quality. Manual transmission vehicles are getting refined for a pleasant driving experience. The gear shift quality is one of the unique selling points for the vehicle, so the automakers are focusing on the reduction of the gear shift forces. In a manual transmission, the synchronizers are used to match the speed difference between the upstream and downstream inertia for the gear-shifting process. The synchronizers have conical friction surfaces to generate friction and cone torque. The increase in cone torque reduces the gear shift impulse. The cone torque can be increased with mismatch tolerance in the frictional surfaces. In this technique, two cone angles are used for the frictional surfaces.
Technical Paper

An Evaluation of Gear-Shift Impulse of Two Different Architectures of a High-Torque Capacity Manual Inline Transmission

2023-11-10
2023-28-0119
Manual transmission (MT) is still the most preferred solution for emerging markets due to the lower cost of ownership and maintenance coupled with a higher transmission efficiency. In this regard, continuous improvement of the transmission shift quality is quite essential to meet the growing customer expectations. In the present work, a detailed evaluation of the gear-shift impulse (experienced at the gear-shift knob) is conducted between two different architectures of a manual, high-torque (450 Nm input torque) inline transmission meant for a sports utility vehicle (SUV). The conventional manual inline transmission architecture comprises a common gear pair at the input of the transmission. While this input reduction architecture is the most widely used architecture, having the common gear pair at the output of the transmission is also another option. The synchronizers of the manual transmission need to match the speed of the rotating components just before the gear-shifting event.
Technical Paper

Reduction in Synchronizer Ring Wear and Improving the Cone Torque Generation by Enhancing the Lapping Operation Using Statistical Technique

2023-11-10
2023-28-0116
In automotive manual transmission gearboxes, the synchronizer rings play a vital role in gear shift operations. The efficiency of the synchronizer ring depends upon the frictional surface geometry. The critical parameter is the synchronizer ring frictional surface circularity. The circularity deviation causes higher synchronizer ring wear and poor cone torque generation. With the current manufacturing methods and the thickness of the synchronizer ring, circularity improvement is a challenge. The synchronizer ring thread turned part is lapped to improve the circularity. Reduction in circularity can be improved by optimizing the lapping operation. In this work, an optimal lapping condition was developed using statistical methods. Taguchi DOE was used to analyze the different parameter combinations along with the noise parameter – different ranges of circularity variation in turning operation. This helps to find the best lapping parameter settings to improve the reduction in circularity.
Technical Paper

Effect of Temperature on Synchronizer Ring Performance

2023-11-10
2023-28-0054
The brass synchronizers are not resistant to abusive conditions of gearbox operations, but they are very durable and cheap when used on their favorable material property working limit. The main failure which can occur in the gearbox due to the synchronizer is crash noise. During gear shifting the gear crash will create high discomfort for the driver and must apply high force to change the gears. The main factors which contribute to the crash phenomenon are the insufficient coefficient of friction, high drag in the system, and high wear rate of the synchronizer rings before the intended design life of the synchronizer. The brass synchronizers were tested on the SSP-180, ZF synchronizer test rig to know the effect of the synchronizer performance parameters like the coefficient of friction, sleeve force, slipping time as well as durability parameters like wear rate when the operating temperature of the oil is changed.
Technical Paper

Cold Condition N to 1 Gearshift Blockage Analysis in a Manual Transmission Gearbox

2023-11-10
2023-28-0053
Manual transmissions are the preferred transmission for drivers who love sporty gear shifts. Manual transmission vehicles are cheaper, very efficient, and offer quick gear shifts. Worldwide manual transmission contributes to 36.15% and in India it contributes overall 80% of today's market share. The customers expect a very smooth gearshift which is a challenge to achieve in all ambient temperatures. In a gear shift event, the synchronizers synchronize the speed of the gears. The force applied at the gear shift knob, generates the cone torque and stops the rotating input shaft for the Neutral (N) to 1 gear shifting. The early morning gear shifts have high gear shift effort. This effort is getting reduced with the increase in temperature. This is due to the drag in the gearbox which is inevitable. This work focuses on improving the very first gear shift event of N to 1 after the engine crank from cold (8°) to hot (80°) condition.
Technical Paper

Synchronizer Spring Failure Due to Gear Shift Loads - Investigation and Design Recommendations

2023-11-10
2023-28-0051
In manual transmission, the vital function of synchronizer pack is to synchronize the speed of the target gear for smooth gear shifting. The synchronizer pack consists of various elements and each of these elements has specific function. These elements are baulk rings, shifter sleeve, hub, synchro key, synchro springs etc. The function of synchronizer can be affected due to failure of any one of these elements. This work focuses on the failure of synchronizer pack due to synchro spring failure. The function of synchronizer spring is to exert the required force, to index the synchronizer ring before the movement of shifter sleeve over synchronizer ring. During the shifting of shifter sleeve from one gear to another gear, the springs deflect in both shifting directions. This causes fatigue failure of synchronizer springs. The manufacturing variations, and part quality issues results in very early fatigue failure of synchronizer springs.
Technical Paper

Improving the Gearbox Efficiency by Reducing Drag Loss IN Automotive Manual Transmission

2023-11-10
2023-28-0115
Internal combustion engine vehicles are major contributors to many environmental and health hazardous emissions and sometimes consume more fuel. New regulations like Corporate Average Fuel Efficiency (CAFÉ) norms are coming up and demand lower emissions. Original Equipment Manufacturers (OEMs) are committed to bringing various technological advancements in Internal Combustion Engine (ICE)powered vehicles to maximize their efficiency. Hence it is important to reduce the loss and improve the fuel economy. This paper explains a new approach methodology used for reducing the gearbox drag by 5- 10 %. This improvement can significantly contribute to the overall efficiency improvement thus carbon footprints of vehicle getting reduced.
Technical Paper

Effect of Rolling Direction and Gauge Length on the Mechanical Properties of S460MC High Strength Low Alloy Steel

2023-05-25
2023-28-1329
Tensile Testing is one of the most used and highly reliable method of mechanical testing to evaluate the tensile properties of the material. However, there is a large scope for discussing the behavior of the metals based on the direction of rolling and the tensile specimen size used for testing. This paper discusses the variation observed in the tensile values along the direction of rolling and traverse to the direction of rolling for S460MC. It also evaluates the variation observed in the values based on the various gauge lengths (GL) commonly used in testing as per international standards (80mm, 50mm and 25mm GL). It is observed that perpendicular to the direction of rolling, the Yield and Tensile strength of the material increase marginally while the Elongation percentage (%E) decreases by a small margin irrespective of the gauge length taken into consideration.
Technical Paper

Effect of Varying Levels of Work Hardening and Bake Hardening on the Mechanical Properties of Dual Phase Steels

2023-05-25
2023-28-1331
In most cases, the properties of a metal are evaluated in their as rolled condition, prior to any work hardening or bake hardening. But in the Automotive World, these steels get work hardened during the forming process and bake hardened in the paint shop. The goal of this paper is to evaluate the variations in the performance of Dual Phase (DP) steels and understand the most optimized method of testing and property generation. This method can then be used to extrapolate to real automotive components. Dual Phase Steels or DP Steels contain a mixture of Ferrite & Martensite from which they derive their name. They are a part of the advanced high strength and ultra-high strength steels steel family according to World Auto Steels. The Ferrite phase, with its iron content contributes to the material displaying an increased level of ductility whilst, the martensitic phase provides the steel with increased mechanical strength.
Technical Paper

Study on the Effect of Clutch Hydraulic System Hysteresis on Intermittent Clutch Pedal Stuck Concern

2023-04-11
2023-01-0462
The clutch pedal in manual transmission plays a significant role in defining the comfort of driver as it is a direct customer interfaces in the vehicle. Clutch & its hydraulic release system in manual transmission are the significant components which affects the maneuverability of the vehicle and the driver comfort. The clutch pedal characteristics optimization is one of the vital parameters are involving various parameters like pedal effort, pedal travel, hump, engagement and disengagement travel, modulation travel & pedal return curve min load. Normally the clutch pedal characteristics has a hysteresis between the forward and return curve (depress and release of the clutch pedal). The hysteresis is the component of mechanical friction like clutch pedal, clutch cover, and hydraulic seal friction. For an optimum clutch pedal feel, free play, peak effort, max. travel, hump and return load are the major functional parameters.
Technical Paper

A Holistic Approach of Developing New High Strength Cast Iron for Weight Optimization

2021-09-22
2021-26-0244
Foundry industries are very much familiar and rich experience of producing ferrous castings mainly Flake Graphite (FG) and Spheroidal Graphite (SG) cast iron. Grey cast iron material is mainly used for dampening applications and spheroidal graphite cast iron is used in structural applications wherein high strength and moderate ductility is necessary to meet the functional requirements. However, both types of cast iron grades are very much suitable in terms of manufacturing in an economical way. Those grades are commercially available and being consumed in various industries like automotive, agriculture etc, High strength SG Iron grades also being manufactured by modifying the alloying elements with copper, chromium, manganese andcobalt. but it has its own limitation of reduction in elongation when moving from low to high strength SG iron material. To overcome this limitation a new cast iron developed by modifying the chemical composition.
Technical Paper

Improving the Clutch Design Robustness by Virtual Validation to Predict Clutch Energy Dissipation and Temperature in Clutch Housing

2021-09-22
2021-26-0329
During the vehicle launch (i.e. moving the vehicle from “0” speed), the clutch would be slowly engaged by the Driver or Transmission Control Unit (in Automatic Transmission/Automatic Manual Transmission vehicle) for smooth torque transfer between engine and transmission. The clutch is designed to transfer max engine torque with min heat generation. During the clutch engagement, the difference in flywheel and gearbox input shaft speed is called the clutch slipping phase which then leads to a huge amount of energy being dissipated in terms heat due to friction. As a result, clutch surface temperature increases consistently, when the surface temperature crosses the threshold limit, the clutch wears out quickly or burns spontaneously. Hence it is crucial to predict the energy dissipation and temperature variation in various components of clutch assembly through virtual simulation.
Technical Paper

A 1:3 Small Scale Vehicle Model Investigation in Small Scale Wind Tunnel and Correlation with Full Vehicle Testing

2021-09-22
2021-26-0493
In present study a comparative investigation and correlation attempted on small scale vehicle model for aerody-namic drag performance at small scale wind tunnel test facility in India vs full vehicle tested at globally know and accepted full scale test facility in Pininfarina, Italy. Current investigation aims to assess the small-scale wind tunnel suitable for testing 1:3 small scale car models A scale model of 1:3 scale size was tested in small scale wind tunnel (at IISC,Bengaluru, India) having test section area of 11.68 Sq. m. To understand the overall vehicle aerodynamic drag performance small scale model was test-ed for different configurations such as baseline, spoiler removal, underbody cover and different yaw condition. To understand the correlation between small scale vs full vehicle’s aerodynamic performance one actual vehicle was also tested at full scale wind tunnel Pinifarina Italy.
Technical Paper

Under-Hood CRFM and CAC Air Flow Management of Vehicle to Improve Thermal Performance by 1D Method Using Amesim

2021-09-15
2021-28-0140
Currently the Automotive industry demands highly competitive product to survive in the global tough competition. The engine cooling system plays a vital role in meeting the stringent emission norms and improving the vehicle fuel economy apart from maintaining the operating temperature of engine. The airflow through vehicle subsystems like the grille, bumper, the heat exchangers, the fan and shroud and engine bay are called as front-end flow. Front end flow is crucial factor in engine cooling system as well as in determining the aerodynamic drag of vehicle. The airflow through the engine compartment is determined by the front-end vehicle geometry, the CRFM and CAC package, the engine back restriction and the engine compartment geometry including the inlet and outlet sections. This paper discusses the 1D modelling method for front-end airflow rate prediction and thermal performance by 1D method. The underbody components are stacked using heat stack and simulated in pressure mode.
Technical Paper

Effect of Steel Wheel Disc Hat Profile and Vent Hole Shape on Fatigue Life in Cornering Test

2021-04-06
2021-01-0934
Automotive steel wheel is a critical component for human safety. For validating steel wheel various tests will be performed at component and vehicle level. Cornering test performed at vehicle level is one of the tests, where wheel will be validated for high cornering loads. Cornering test performed at vehicle level consists of three different events i.e., rotations of vehicle in track1, rotations of vehicle track 2 and rotations of vehicle in track3. As wheel will experience different loading in each of the events of cornering test, correlating the virtual Finite Element Analysis (FEA) with physical test is quite challenging. If in FEA we can predict the damage and life very near to the physical validation, we can create a safe wheel for high cornering loads without any test concerns. Vent hole shape and Hat depth are two important aspects in wheel disc design. Vent hole shape and size will influence the heat dissipation of braking.
Technical Paper

Optimization of Clutch Characteristics to Improve the Launch Performance of a Sports-Utility Vehicle

2020-09-25
2020-28-0481
Vehicles with manual transmission are still the most preferred choice in emerging markets like India due to their benefits in cost, simplicity and fuel economy. However, the ever-increasing vehicle population and traffic congestion demand a smooth clutch operation and a comfortable launch behaviour of any manual transmission vehicle. In the present work, the launch performance of a sports-utility vehicle (SUV) equipped with dual mass flywheel (DMF) and self-adjusting technology (SAT) clutch could be improved significantly by optimizing the clutch system. The vehicle was observed to be having a mild judder during clutch release (with 0% accelerator pedal input) in a normal 1st gear launch in flat road conditions. An extensive experimental measurement at the vehicle level could reveal the launch judder is mainly due to the 1st order excitation forces created by the geometrical inaccuracy of the internal parts of the clutch system.
Technical Paper

Development of a Component Level Test Methodology to Validate the Transmission Bush of a Manual Gear Box

2020-04-14
2020-01-1409
In the era of fierce competition, launching a defect free product on time would be the key to success. In a modern automobile, the transmission system is designed with utmost care in order to transfer the maximum power from engine to driveline smoothly and efficiently. Optimized design of all the transmission components is necessary in order to meet the power requirement with the least possible weight. This optimization may require gear designs with different internal diameters. The assembly of these gears may not be possible on a solid transmission shaft. To facilitate assembling while retaining optimum design of transmission parts, a separate bush is designed to overcome this limitation. Some bushes may require a flange to restrict any free play of the mounted gear in its axial direction. During complete system level testing of one newly developed manual transmission, bush failure was observed.
Technical Paper

A Unique Approach to Optimize the Gear-Shift Map of a Compact SUV to Improve FE and Performance

2020-04-14
2020-01-0969
Automated manual transmission (AMT) is often preferred by car manufacturers as entry-level automation technology. The AMT technology can provide the comfort of an automatic gearbox at a reasonable cost impact over manual transmission (MT). This paper explains the unique approach to define the gear-shift map of a compact sports utility vehicle (SUV) considering the unique requirements of the Indian market. The real-world measurements revealed that an aggressive shift pattern with delayed upshifts and quick downshifts can deliver good low-end drivability and performance while compromising on fuel economy (FE). Moreover, the chassis dyno measurements in the modified Indian drive cycle (MIDC) indicated lower FE values. On the other hand, a shift pattern with early upshifts and delayed downshifts could help in achieving a better FE while compromising on drivability and performance. Hence, a unique approach is used to derive the most optimal gear-shift map for each operating gear.
Technical Paper

Spot Weld Fatigue Correlation Improvement in Automotive Structures Using Stress Based Approach with Contact Modelling

2020-04-14
2020-01-0182
In automotive Body-In-White (BIW) structures, stiffness and the fatigue behavior is greatly influenced by the properties of its joints. Spot welding is one of the most widely used process for joining of sheet metals in BIW. Spot weld fatigue life under Accelerated Durability Test (ADT) is crucial for durability performance of BIW structures. Experience of BIW validations highlighted more number of spot weld failures in CAE when compared to actual tests. Hence, lot of iterations in the form of design modifications are required to be carried out to make these spot welds meet the targets which increases design & development time as well as cost. Current practice uses force-based approach for predicting spot weld fatigue life in CAE. To improve the spot weld fatigue life correlation, extensive study has been carried out on the approaches used for calculating spot weld fatigue life, namely force & stress-based approaches.
X