Refine Your Search

Topic

Author

Search Results

Technical Paper

Investigation on Fuel Economy Benefits by Lubrication System Optimization for a High Performance 2.2 L Diesel Engine

2024-04-09
2024-01-2415
Lubrication systems play a major role not only in the durability of modern IC engines but also in performance and emissions. The design of the lubrication system influences the brake thermal efficiency of the engine. Also, efficient lubrication reduces the engine's CO2 emissions significantly. Thus, it is critical for an IC engine to have a well-designed lubrication system that performs efficiently at all engine operating conditions. The conventional lubrication system has a fixed-displacement oil pump that can cater to a particular speed range. However, a fully variable displacement oil pump can cater to a wide range of speeds, thereby enhancing the engine fuel efficiency as the oil flow rates can be controlled precisely based on the engine speed and load conditions. This paper primarily discusses the optimization of a lubrication system with a Variable Displacement Oil Pump (VDOP) and a map-controlled Piston Cooling Jet (PCJ) for a passenger car diesel engine.
Technical Paper

Application of Triz Methodology in Enhancing Product Life Cycle of an Automotive Diesel Engine

2024-04-09
2024-01-2457
This study employs TRIZ, the Theory of Inventive Problem Solving, to optimize a 2.2-liter automotive diesel engine facing challenges from system technology upgrades in the fuel injection system. This system requires the common rail pump. Two pumps were chosen and based on fuel quantity balance (QB) and drive ratio, one pump was finalized as the technical option, and it was studied in a detailed manner to identify the improving and worsening parameters with the help of a contradiction matrix and the 40 TRIZ principle, which are the main core ideas of TRIZ. The worsening parameters (drive torque) are reduced by 21.36%, and the chain load in the 0.5% worn chain condition also fulfills the system requirement. The chosen pump is further studied. This also helped to identify and categorize the system components of the main engineering system into subsystems and supersystems.
Technical Paper

A Methodology of Optimizing Steering Geometry for Minimizing Steering Errors

2024-01-16
2024-26-0062
The focus on driver and occupant safety as well as comfort is increasing rapidly while designing commercial vehicles in India. Improvements in the road network have enhanced road transport for commercial vehicles. Apart from the cost of operation and fuel economy, the commercial vehicles must deliver goods within stipulated time. These factors resulted in higher speed of operation for commercial vehicles. The design should not compromise the safety of the vehicle at these higher speeds of operation. The vehicle should obey the driver’s intended direction at all speeds and the response of the vehicle to driver input must be predictable without much larger surprises which can lead to accidents. The commercial vehicles are designed with rigid axle and RCB type steering system. This suspension and steering design combination introduce steering errors when vehicle travel over bump, braked and while cornering.
Technical Paper

Development of a Fuel Efficiency Enhancement Module for Tractors

2024-01-16
2024-26-0064
In farm tractors, the available drawbar power, and Power Take-Off (PTO) power are generally lower than the engine power due to parasitic losses. These losses are caused by engine-driven auxiliary loads such as cooling fans, hydraulic pumps for power steering, alternators, etc. Minimizing these parasitic losses can increase the available drawbar power and PTO power, resulting in direct fuel savings by reducing fuel consumption. The continuous increase in fuel costs and the environmental impact of emitted gases from burned fuel into the atmosphere have necessitated the replacement of hydraulic power steering and mechanical fans with Electric Power Steering (EPS) and electric fans, respectively, to improve efficiency. The existing battery has been replaced with a higher capacity battery to provide power to the electric fan, electric power steering, and other electrical components.
Technical Paper

Optimized Soot Monitoring by Ammonia Injection in a sDPF System for BS6.2 Application

2024-01-16
2024-26-0141
The BS6 norms (phase 1) were implemented in India from April 1, 2020 and replaced the previous BS4 norms. Phase 2 of the BS6 norms, which came into effect on April 1, 2023. In accordance with the regulation requirement, effective performance of after treatment systems like DPF and SCR demands critical hardware implementation and robust monitoring strategies in the extended operating zone. Effective OBD monitoring of DPF, which is common to all BSVI certified vehicles, such that the defined strategy detects the presence or absence of the component is imperative. A robust monitoring strategy is developed to detect the presence of the DPF in the real world incorporating the worst possible driving conditions including idling, and irrespective of other environmental factors subject to a location or terrain. The differential pressure sensor across the DPF is used to study the actual pressure drop across the DPF.
Technical Paper

Soot Sensor Elimination with DPF Substrate Failure Monitoring

2024-01-16
2024-26-0153
The automobile industry is going through one of the most challenging times, with increased competition in the market which is enforcing competitive prices of the products along with meeting the stringent emission norms. One such requirement for BS6 phase 2 emission norms is monitoring for partial failure of the component if the tailpipe emissions are higher than the OBD limits. Recently PM (soot) sensor is employed for partial failure monitoring of DPF in diesel passenger cars.. PM sensor detects soot leakage in case of DPF substrate failure. There is a cost factor along with extensive calibration efforts which are needed to ensure sensor works flawlessly. This paper deals with the development of an algorithm with which robust detection of DPF substrate failure is achieved without addition of any sensor in the aftertreatment system.
Technical Paper

A Real-World Range Testing and Analysis Methodology Development for Battery Electric Vehicles

2024-01-16
2024-26-0124
Range anxiety is one of the major factors to be dealt with for increasing penetration of EVs in current Automotive market. The major reasons for range anxiety for customers are sparse charging infrastructure availability, limited range of Electric vehicles and range uncertainty due to diverse real-world usage conditions. The uncertainty in real world range can be reduced by increasing the correlation between the testing condition during vehicle development and real-world customer usage condition. This paper illustrates a more accurate test methodology development to derive the real-world range in electric vehicles with experimental validation and system level analysis. A test matrix is developed considering several variables influencing vehicle range like different routes, drive modes, Regeneration levels, customer drive behavior, time of drive, locations, ambient conditions etc.
Technical Paper

DeNOx Strategy Adaptation and Optimization in Naturally Aspirated Engine LCV Application for BSVI OBD-II Norms

2024-01-16
2024-26-0160
Powertrain complexity rapidly increasing to meet fast moving regulation requirements. The BS6 Phase-1 regulation norms were implemented in India from April 1, 2020 and replaced the previous BS4 norms. Phase-2 of the BS6 regulation norms were came into effect on April 1, 2023. To meet this stringent regulation requirement, need effective performance of after treatment systems like DOC, DPF and SCR demands critical hardware selection and implementation. In Indian market, LCV application is cost sensitive and highly competitive where operational cost is most critical factor. Naturally aspirated engine has less operating cost, which is the best for LCV applications, but is has its own challenges to meet BS6 norms like higher engine out NOx, dynamic temperature profiles etc. A robust DeNOx emissions strategy is developed in naturally aspirated engine LCV application to meet cycle emissions, real drive emissions and OBD requirements.
Technical Paper

Investigation of Gasket Sealing Behavior of an All-Aluminum High Performance, New Generation Passenger Car Engine under Extreme Engine Operating Conditions

2024-01-16
2024-26-0033
The increasing demand for higher specific power, fuel economy, Operating Costs as well as meeting global emission norms have become the driving factors of today’s product development in the automotive market. Substitution of high-density materials and more precise adjustment of material parameters help in significant weight decrease, but it is accompanied by undesirable cost increase and manufacturing complexity. This becomes a challenge for every automotive engineer to balance the above parameters to make a highly competitive design. This work is a part of the Design and Development of 2.2 L, 4 Cylinder TCIC Diesel Engine for a whole new vehicle platform, concentrated on automotive passenger car operation. This paper explains the selection of a suitable cylinder head gasket technology for a lightweight engine that acts as a sealing interface between the cylinder block and cylinder head.
Technical Paper

Optimization of Trim Clip Design for Performance Improvement

2024-01-16
2024-26-0367
As customers are inching towards adoption of electric vehicles as an alternative to internal combustion engines, automotive OEM’s will have to embrace this change and equip with new product development process. When it comes to Electric Vehicle (EV) in comparison with Internal Combustion Engine (ICE), NVH plays a major differentiator for vehicle refinement. Squeak and rattles will account for 20-25% of overall in-cabin noise source in an electric vehicle, most of which is observed from interior trims. Trims are mounted using small plastic clips which function as attachments and play a significant role in part retention and part integrity during normal operation and in case of any transient events. The engineering specifications for selecting a clip is force in newtons and it is mostly driven by ease of assembly, serviceability, and durability. A single DOF system with a specimen mass is developed and stiffness and damping are calculated based on transmissibility.
Technical Paper

Solving Whine Noise in Electric Vehicles: A Comprehensive Study Using Experimental and Multiphysics Techniques

2024-01-16
2024-26-0222
This paper examines one of the approaches used to identify the root causes of sound quality issues in vehicles, including the direct impact of psychoacoustics on the human experience. Specifically, the absence of masking effects provided by traditional combustion engines has made noise and vibration from electric drives significant factors in decision-making processes, with high-pitched tonal noise from electric motors causing annoyance and sound quality concerns for electrified propulsion systems. During vehicle testing at different speeds, a whining noise was observed, leading to an NVH test to locate the noise source. The noise is traced to the transmission by the dominating order of input reduction along with the contribution from the casing resonance. A multi-physics-based e-NVH analysis was performed, and the test data were correlated.
Technical Paper

Cold Condition N to 1 Gearshift Blockage Analysis in a Manual Transmission Gearbox

2023-11-10
2023-28-0053
Manual transmissions are the preferred transmission for drivers who love sporty gear shifts. Manual transmission vehicles are cheaper, very efficient, and offer quick gear shifts. Worldwide manual transmission contributes to 36.15% and in India it contributes overall 80% of today's market share. The customers expect a very smooth gearshift which is a challenge to achieve in all ambient temperatures. In a gear shift event, the synchronizers synchronize the speed of the gears. The force applied at the gear shift knob, generates the cone torque and stops the rotating input shaft for the Neutral (N) to 1 gear shifting. The early morning gear shifts have high gear shift effort. This effort is getting reduced with the increase in temperature. This is due to the drag in the gearbox which is inevitable. This work focuses on improving the very first gear shift event of N to 1 after the engine crank from cold (8°) to hot (80°) condition.
Technical Paper

Numerical Investigation on the Design and Development of Automotive Exhaust Muffler –A Case Study

2023-11-10
2023-28-0085
Attaining better acoustic performance and back-pressure is a continuous research area in the design and development of passenger vehicle exhaust system. Design parameters such as tail pipe, resonator, internal pipes and baffles, muffler dimensions, number of flow reversals, perforated holes size and number etc. govern the muffler design. However, the analysis on the flow directivity from tail pipe is limited. A case study is demonstrated in this work on the development of automotive muffler with due consideration of back pressure and flow directivity from tail pipe. CFD methodology is engaged to evaluate the back pressure of different muffler configurations. The experimental and numerical results of backpressure have been validated. The numerical results are in close agreement with experimental results.
Technical Paper

Improving the Gearbox Efficiency by Reducing Drag Loss IN Automotive Manual Transmission

2023-11-10
2023-28-0115
Internal combustion engine vehicles are major contributors to many environmental and health hazardous emissions and sometimes consume more fuel. New regulations like Corporate Average Fuel Efficiency (CAFÉ) norms are coming up and demand lower emissions. Original Equipment Manufacturers (OEMs) are committed to bringing various technological advancements in Internal Combustion Engine (ICE)powered vehicles to maximize their efficiency. Hence it is important to reduce the loss and improve the fuel economy. This paper explains a new approach methodology used for reducing the gearbox drag by 5- 10 %. This improvement can significantly contribute to the overall efficiency improvement thus carbon footprints of vehicle getting reduced.
Technical Paper

Study of Indirect Heat Pump for an Electric Vehicle

2023-09-14
2023-28-0023
Electric Vehicle is the need of an hour, as due to excessive usage of IC Engine vehicles has resulted in the depletion of the ozone layer to a significant level and fuel cost is increasing. With new technologies coming into the market, challenges come hand in hand because of Electric Vehicle. In comparison to IC Vehicle, areas of thermal management or the number of components for which thermal management needs to be done is higher and rather complex. As the thermal management system is the second highest energy consuming source after the powertrain of the electric vehicle, an efficient and reliable design is mandatory to ensure better range in an Electric Vehicle. Thermal Management of the Electric Vehicle has been identified as one of the critical parameters for balancing both cabin comfort as well as Battery temperature. One of the major concerns is meeting the Cabin comfort during colder weather with minimum energy consumption.
Technical Paper

Design Analysis and Development of Aluminium Cylinder Block with Slip-Fit Cylinder Liners for High Performance New Generation Passenger Car Diesel Engine

2023-04-11
2023-01-0442
The global automotive industry is growing rapidly in recent years and the market competition has increased drastically. There is a high demand for passenger car segment vehicles with high torque delivery and fuel economy for a pleasant drivability experience. Also, to meet the more stringent emission requirements, automakers are trying very hard to reduce the overall vehicle gross weight. In lowering both fuel consumption and CO2 generation, serious efforts have been made to reduce the overall engine weight. An engine cylinder block is generally considered to be the heaviest part within a complete engine and block alone accounts for 3-4% of the total weight of the average vehicle, thus playing a key role in weight reduction consideration. Aluminum casting alloys as a substitute for the traditional cast iron can mean a reduction in engine block weight between 40 and 55% [9], even if the lower strength of aluminum compared to grey cast iron is considered.
Technical Paper

High-Fidelity CAE Simulation of 4-Cylinder 4-Stroke Hollow Assembled Camshaft under Multi Axial Load

2023-04-11
2023-01-0163
The major area in which the automotive manufacturers are working is to produce high-performance vehicles with lighter weight, higher fuel economy and lower emissions. In this regard, hollow camshafts are widely used in modern diesel and gasoline engines due to their inherent advantages of less rotational inertia, less friction, less weight and better design flexibility. However, the dynamic loads of chain system, valve train and fuel injection pump (if applicable) makes it challenging to design over-head hollow camshafts with the required factor of safety (FOS). In the present work, high-fidelity FE model of a hollow camshaft assembly is simulated to evaluate the structural performance for assembly loads, valve train operating loads, fuel injection pump loads and chain system loads. The investigation is carried out in a high power-density (70 kW/lit) 4-cylinder in-line diesel engine.
Technical Paper

Light Weight and High Strength Load Floor with Paper Honeycomb Technology

2023-04-11
2023-01-0076
In order to sustain in automobile industry, fuel economy and robustness are playing vital role in vehicle. Every gram of weight will have an impact on fuel economy, thus burning a hole in consumers pocket and contributing heavily to the carbon footprint. Composite material development plays important role in meeting the stringent self-imposed targets of the automotive manufacturers and light weighting is becoming a prime option for improving Fuel Economy. The main objective of this paper is to optimize the weight of the luggage lid floor and reduce its cost without compromising on the strength by changing the raw material and manufacturing process. This part is in trunk compartment of the vehicle. Main function of this part is to withstand the luggage load under various user loading patterns at varied temperature and while driving on different road conditions.
Technical Paper

Investigation Of Variable Displacement Oil Pump and Its Influence on Fuel Economy for a 1.5 L, 3 Cylinder Diesel Engine

2023-04-11
2023-01-0465
The Introduction of Corporate Average Fuel Economy (henceforth will be addressed as CAFE) regulations demand suitable technological upgrades to meet the significant increase in targets of vehicle fleet fuel economy. Engine Downsizing and Friction Reduction measures help in getting one step closer to the target. In a Conventional Oil Pump, the pump discharge flow and pressure are a direct function of operating speed. There is no control over lubricant flow which results in increased power and fuel consumption due to its unnecessary pumping characteristics irrespective of the actual engine demand. This paper discusses the introduction of a variable displacement oil pump (henceforth will be addressed as VDOP) that was adapted to a 1.5-liter 3 Cylinder Diesel Engine. This approach helps the system to reduce parasitic losses as the oil flow is regulated based on the mechanical needs of the engine. The flow is regulated with help of a solenoid valve which receives input from the ECU.
Technical Paper

Light Weighting of Accessory Support Bracket from Cast Iron to Aluminium Through Topology Optimization

2022-08-30
2022-01-1110
In today’s scenario, internal combustion engines have conflicting requirements of high power density and best in class weight. High power density leads to higher loads on engine components and calls for a material addition to meet the durability targets. Lightweight design not only helps to improve fuel economy but also reduces the overall cost of the engine. Material change from cast iron to aluminium has a huge potential for weight reduction as aluminium has 62% lesser mass density. But this light-weighting impacts the stiffness of the parts as elastic modulus drops by around 50%. Hence, this calls for revisiting the design and usage of optimization tools for load-bearing members on the engine to arrive at optimized sections and ribbing profiles. This paper discusses the optimization approach for one of the engine components i.e., the FEAD (front end accessory drive) bracket.
X