Refine Your Search

Topic

Author

Search Results

Technical Paper

Aero-Engine Fastened Structural Components: An Investigation into Impact Induced Three-Dimensional Dynamic Fracture Mechanism

2024-06-01
2024-26-0414
Fastener joints play a critical role within aircraft engine structures by connecting vital structural members and withstanding various load scenarios, including impact occurrences like foreign object damage (FOD) on engine nacelles. The precise modeling and simulation of fastener joint behavior under dynamic loads are pivotal to ensuring their structural integrity and functionality. Simulation is essential for minimizing costly experiments in evaluating the challenging design aspect of containing FOD. Prior investigations on fastener joints have predominantly focused on quasi-static or in-plane dynamic loads. This study introduces a comprehensive methodology to simulate the impact dynamics of fastener joints, accommodating both in-plane and out-of-plane loads. The approach employs a fully self-consistent 3D viscoplastic finite element formulation-based simulation using a newly developed code.
Technical Paper

Multi-Scale Modeling of Selective Laser Melting Process

2024-06-01
2024-26-0415
The Selective Laser Melting (SLM) process is employed in high-precision layer-by-layer Additive Manufacturing (AM) on powder bed and aims to fabricate high-quality structural components. To gain a comprehensive understanding of the process and its optimization, both modeling and simulation in conjunction with extensive experimental studies along with laser calibration studies have been attempted. Multiscale and multi-physics-based simulations have the potential to bring out a new level of insight into the complex interaction of laser melting, solidification, and defect formation in the SLM parts. SLM process encompasses various physical phenomena during the formation of metal parts, starting with laser beam incidence and heat generation, heat transfer, melt/fluid flow, phase transition, and microstructure solidification. To effectively model this Multiphysics problem, it is imperative to consider different scales and compatible boundary conditions in the simulations.
Technical Paper

Assessing the Structural Feasibility and Recyclability of Flax/PLA Bio-Composites for Enhanced Sustainability

2024-06-01
2024-26-0407
Bio-composites have gained significant attention within the aerospace industry due to their potential as a sustainable solution that addresses the demand for lightweight materials with reduced environmental impact. These materials blend natural fibers sourced from renewable origins, such as plant-based fibers, with polymer matrices to fabricate composite materials that exhibit desirable mechanical properties and environmental friendliness. The aerospace sector's growing interest in bio-composites originates from those composites’ capacity to mitigate the industry's carbon footprint and decrease dependence on finite resources. This study aims to investigate the suitability of utilizing plant derived flax fabric/PLA (polylactic acid) matrix-based bio-composites in aerospace applications, as well as the recyclability potential of these composites in the circular manufacturing economy.
Technical Paper

A Methodology for Accelerated Thermo-Mechanical Fatigue Life Evaluation of Advanced Composites

2024-06-01
2024-26-0421
Thermo-mechanical fatigue and natural aging due to environmental conditions are difficult to simulate in an actual test with the advanced fiber-reinforced composites, where their fatigue and aging behavior is little understood. Predictive modeling of these processes is challenging. Thermal cyclic tests take a prohibitively long time, although the strain rate effect can be scaled well for accelerating the mechanical stress cycles. Glass fabric composites have important applications in aircraft and spacecraft structures including microwave transparent structures, impact-resistant parts of wing, fuselage deck and many other load bearing structures. Often additional additively manufactured features and coating on glass fabric composites are employed for thermal and anti-corrosion insulations. In this paper we employ a thermo-mechanical fatigue model based accelerated fatigue test and life prediction under hot to cold cycles.
Technical Paper

A Multi-Scale Computational Scheme for Prediction of High-Cycle Fatigue Damage in Metal Alloy Components

2024-06-01
2024-26-0430
Aerospace structural components grapple with the pressing issue of high-cycle fatigue-induced micro-crack initiation, especially in high-performance alloys like Titanium and super alloys. These materials find critical use in aero-engine components, facing a challenging combination of thermo-mechanical loads and vibrations that lead to gradual dislocations and plastic strain accumulation around stress-concentrated areas. The consequential vibration or overload instances can trigger minor cracks from these plastic zones, often expanding unpredictably before detection during subsequent inspections, posing substantial risks. Effectively addressing this challenge demands the capability to anticipate the consequences of operational life and aging on these components. It necessitates assessing the likelihood of crack initiation due to observed in-flight vibration or overload events.
Technical Paper

On the Aero-Thermo-Structural Performance of Rectangular and Axisymmetric Scramjet Configurations

2024-06-01
2024-26-0441
Scramjet-based hypersonic airbreathers are needed for next-generation defense and space applications. Two scramjet configurations, namely, rectangular and axisymmetric, are primarily studied in the literature. However, there is no quantitative comparison of the performance metrics between these two scramjet configurations. This study investigates the aero-thermo-structural performance of rectangular and axisymmetric scramjet engines at Mach 7 and 25 km altitude. A numerical framework involving computational fluid dynamics and computational structural dynamics is established. The aero-thermo-structural loads on the scramjet flow path are estimated using RANS/FANS simulation. A finite element-based coupled thermo-structural analysis is performed to understand the thermo-structural response. Before using the numerical models for the study, CFD and CSD modules are validated with literature data.
Technical Paper

Enhancement of Physical and Mechanical Attributes of a Natural Fiber-Reinforced Composite for Engineering Applications

2024-04-09
2024-01-2237
A natural fiber based polymer composite has the advantage of being more environment-friendly from a life cycle standpoint when compared to composites reinforced with widely-used synthetic fibers. The former category of composites also poses reduced health risks during handling, formulation and usage. In the current study, jute polymer laminates are studied, with the polymeric resin being a general purpose polyester applied layer-by-layer on bi-directionally woven jute plies. Fabrication of flat laminates following the hand layup method combined with compression molding yields a jute polymer composite of higher initial stiffness and tensile strength, compared to commonly used plastics, coupled with consistency for engineering design applications. However, the weight-saving potential of a lightweight material such as the current jute-polyester composite can be further enhanced through improvement of its behavior under mechanical loading.
Technical Paper

A Novel Approach for Mechanical Characterization of Angle-Ply Composite Laminates

2024-04-09
2024-01-2435
​Composites made of continuous fibers generally have higher strength-to-weight ratios in fiber directions as compared to those made of discontinuous fibers. However, the latter tend to display quasi-isotropic properties which can be of advantage when directions of mechanical loading can vary. For many real-world applications such as robust design of vehicle body components for crashworthiness, impact loads are stochastic in nature both in terms of magnitude and direction. Hence, in order to realize the true potential of laminated composites with continuous fibers, instead of orthotropic laminates which are most common due to the ease of design and manufacturing, angle-ply laminates are necessary.
Technical Paper

Application of Triz Methodology in Enhancing Product Life Cycle of an Automotive Diesel Engine

2024-04-09
2024-01-2457
This study employs TRIZ, the Theory of Inventive Problem Solving, to optimize a 2.2-liter automotive diesel engine facing challenges from system technology upgrades in the fuel injection system. This system requires the common rail pump. Two pumps were chosen and based on fuel quantity balance (QB) and drive ratio, one pump was finalized as the technical option, and it was studied in a detailed manner to identify the improving and worsening parameters with the help of a contradiction matrix and the 40 TRIZ principle, which are the main core ideas of TRIZ. The worsening parameters (drive torque) are reduced by 21.36%, and the chain load in the 0.5% worn chain condition also fulfills the system requirement. The chosen pump is further studied. This also helped to identify and categorize the system components of the main engineering system into subsystems and supersystems.
Technical Paper

Investigation on Fuel Economy Benefits by Lubrication System Optimization for a High Performance 2.2 L Diesel Engine

2024-04-09
2024-01-2415
Lubrication systems play a major role not only in the durability of modern IC engines but also in performance and emissions. The design of the lubrication system influences the brake thermal efficiency of the engine. Also, efficient lubrication reduces the engine's CO2 emissions significantly. Thus, it is critical for an IC engine to have a well-designed lubrication system that performs efficiently at all engine operating conditions. The conventional lubrication system has a fixed-displacement oil pump that can cater to a particular speed range. However, a fully variable displacement oil pump can cater to a wide range of speeds, thereby enhancing the engine fuel efficiency as the oil flow rates can be controlled precisely based on the engine speed and load conditions. This paper primarily discusses the optimization of a lubrication system with a Variable Displacement Oil Pump (VDOP) and a map-controlled Piston Cooling Jet (PCJ) for a passenger car diesel engine.
Technical Paper

Development of a Fuel Efficiency Enhancement Module for Tractors

2024-01-16
2024-26-0064
In farm tractors, the available drawbar power, and Power Take-Off (PTO) power are generally lower than the engine power due to parasitic losses. These losses are caused by engine-driven auxiliary loads such as cooling fans, hydraulic pumps for power steering, alternators, etc. Minimizing these parasitic losses can increase the available drawbar power and PTO power, resulting in direct fuel savings by reducing fuel consumption. The continuous increase in fuel costs and the environmental impact of emitted gases from burned fuel into the atmosphere have necessitated the replacement of hydraulic power steering and mechanical fans with Electric Power Steering (EPS) and electric fans, respectively, to improve efficiency. The existing battery has been replaced with a higher capacity battery to provide power to the electric fan, electric power steering, and other electrical components.
Technical Paper

Optimized Soot Monitoring by Ammonia Injection in a sDPF System for BS6.2 Application

2024-01-16
2024-26-0141
The BS6 norms (phase 1) were implemented in India from April 1, 2020 and replaced the previous BS4 norms. Phase 2 of the BS6 norms, which came into effect on April 1, 2023. In accordance with the regulation requirement, effective performance of after treatment systems like DPF and SCR demands critical hardware implementation and robust monitoring strategies in the extended operating zone. Effective OBD monitoring of DPF, which is common to all BSVI certified vehicles, such that the defined strategy detects the presence or absence of the component is imperative. A robust monitoring strategy is developed to detect the presence of the DPF in the real world incorporating the worst possible driving conditions including idling, and irrespective of other environmental factors subject to a location or terrain. The differential pressure sensor across the DPF is used to study the actual pressure drop across the DPF.
Technical Paper

Soot Sensor Elimination with DPF Substrate Failure Monitoring

2024-01-16
2024-26-0153
The automobile industry is going through one of the most challenging times, with increased competition in the market which is enforcing competitive prices of the products along with meeting the stringent emission norms. One such requirement for BS6 phase 2 emission norms is monitoring for partial failure of the component if the tailpipe emissions are higher than the OBD limits. Recently PM (soot) sensor is employed for partial failure monitoring of DPF in diesel passenger cars.. PM sensor detects soot leakage in case of DPF substrate failure. There is a cost factor along with extensive calibration efforts which are needed to ensure sensor works flawlessly. This paper deals with the development of an algorithm with which robust detection of DPF substrate failure is achieved without addition of any sensor in the aftertreatment system.
Technical Paper

A Real-World Range Testing and Analysis Methodology Development for Battery Electric Vehicles

2024-01-16
2024-26-0124
Range anxiety is one of the major factors to be dealt with for increasing penetration of EVs in current Automotive market. The major reasons for range anxiety for customers are sparse charging infrastructure availability, limited range of Electric vehicles and range uncertainty due to diverse real-world usage conditions. The uncertainty in real world range can be reduced by increasing the correlation between the testing condition during vehicle development and real-world customer usage condition. This paper illustrates a more accurate test methodology development to derive the real-world range in electric vehicles with experimental validation and system level analysis. A test matrix is developed considering several variables influencing vehicle range like different routes, drive modes, Regeneration levels, customer drive behavior, time of drive, locations, ambient conditions etc.
Technical Paper

DeNOx Strategy Adaptation and Optimization in Naturally Aspirated Engine LCV Application for BSVI OBD-II Norms

2024-01-16
2024-26-0160
Powertrain complexity rapidly increasing to meet fast moving regulation requirements. The BS6 Phase-1 regulation norms were implemented in India from April 1, 2020 and replaced the previous BS4 norms. Phase-2 of the BS6 regulation norms were came into effect on April 1, 2023. To meet this stringent regulation requirement, need effective performance of after treatment systems like DOC, DPF and SCR demands critical hardware selection and implementation. In Indian market, LCV application is cost sensitive and highly competitive where operational cost is most critical factor. Naturally aspirated engine has less operating cost, which is the best for LCV applications, but is has its own challenges to meet BS6 norms like higher engine out NOx, dynamic temperature profiles etc. A robust DeNOx emissions strategy is developed in naturally aspirated engine LCV application to meet cycle emissions, real drive emissions and OBD requirements.
Technical Paper

A Universal Steering Grommet Design Approach to Enhance the Passenger Cabin NVH Performance

2024-01-16
2024-26-0202
As a car OEM, we continuously strive to set the bar for competitors with every product. Consumer travel experiences are enhanced by increasing passenger cabin silence. There is only one steering system opening in the firewall panel, which is used for allowing intermediate shaft's fitment on the pinion shaft of the steering gear. The steering grommet is the sole component that covers the firewall cut-out without disrupting steering operations, which has a substantial impact on the NVH performance of the vehicle. It is typically used in cars to eliminate engine noise and dust entering to passenger compartment. The part is assembled inside the vehicle where the steering intermediate shaft passing through BIW firewall panel. We use a bearing, plastic bush, or direct rubber interference design in the steering grommet to accommodate the rotational input the driver provides to turn the automobile.
Technical Paper

Foam and FRP Sheets Packaging for Headliner Stiffness at Curtain Airbag Area

2024-01-16
2024-26-0008
As we all know, automotive headliners are an essential component of any car’s interior as they cover all the internal components and provide a clean and finished look. Headliners not only increase the aesthetic appeal of a car’s interior, but also acts as an insulation and sound absorption source. As per the latest Government norms, Curtain Airbag (henceforth called as CAB) has been made mandatory and this change calls for the corresponding changes in the Headliner packaging of all passenger vehicles. In general, curtain air-bag deployment calls for a twist open of Headliner at lateral sides (a portion below Hinge-line) during the deployment. This enables the inflated airbag to flow inside the passenger cabin to protect the passenger from any injury. Conventionally no components are packaged below the hinge-line area of headliner to avoid obstruction for CAB deployment and any part fly-off concerns.
Technical Paper

Integration of Seat-Belt Web-Guide Functionality in Trim Part

2024-01-16
2024-26-0018
Restraint systems in automotives are inevitable for the safety of passengers. Seat belts are one such restraint system in automotives that prevent drivers and passengers from being injured during a crash by restraining them back. Seatbelt on automotives has interface with Body-in-white (henceforth called as BIW) and Trim parts in-order to serve its purpose at vehicle level. One such interface part of seat belt is the web guide, which assists and ensures the nylon web’s smooth motion at different seat track positions. Web-guides on automotives ensure the flawless motion of seat belt web at pillar trim areas. In this paper, we are discussing alternate ways of assisting the seat belt web without the web-guide as a separate part. In-order to assist and ensure the motion of nylon web in its trajectory, we have extended the flange of the pillar trim involved.
Technical Paper

Investigation of Gasket Sealing Behavior of an All-Aluminum High Performance, New Generation Passenger Car Engine under Extreme Engine Operating Conditions

2024-01-16
2024-26-0033
The increasing demand for higher specific power, fuel economy, Operating Costs as well as meeting global emission norms have become the driving factors of today’s product development in the automotive market. Substitution of high-density materials and more precise adjustment of material parameters help in significant weight decrease, but it is accompanied by undesirable cost increase and manufacturing complexity. This becomes a challenge for every automotive engineer to balance the above parameters to make a highly competitive design. This work is a part of the Design and Development of 2.2 L, 4 Cylinder TCIC Diesel Engine for a whole new vehicle platform, concentrated on automotive passenger car operation. This paper explains the selection of a suitable cylinder head gasket technology for a lightweight engine that acts as a sealing interface between the cylinder block and cylinder head.
Technical Paper

Analysis and Reduction of Abnormal Suspension Noise in Sports Utility Vehicle

2024-01-16
2024-26-0217
This paper focuses on reducing abnormal noise originating from suspension when driving on rough road at the speed of 20 kmph. The test vehicle is a front wheel driven monocoque SUV powered by four cylinder engine. Cabin noise levels are higher between 100 to 800 Hz when driven on rough road at 20 kmph. Vibration levels are measured on front and rear suspension components, front and rear subframe, subframe connections on body to identify the noise source locations. Since the noise levels are dominant only in certain rough patches at very narrow band of time, wavelet analysis is used for identification of frequency at which the problem exist. Based on wavelet analysis, it is identified that the vibration levels are dominant on front lower control arm (LCA). The dynamic stiffness of LCA bushes is reduced by ~ 40% to improve the isolator performance which reduced the noise levels by ~ 9 dB (A) at the problematic frequency band.
X