Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Experimental Analysis of Force Recovery and Response Time using Strain Measurement Sensors in Stress Wave Force Balance

2024-06-01
2024-26-0451
Severe problem of aerodynamic heating and drag force are inherent with any hypersonic space vehicle like space shuttle, missiles etc. For proper design of vehicle, the drag force measurement become very crucial. Ground based test facilities are employed for these estimates along with any suitable force balance as well as sensors. There are many sensors (Accelerometer, Strain gauge and Piezofilm) reported in the literature that is used for evaluating the actual aerodynamic forces over test model in high speed flow. As per previous study, the piezofilm also become an alternative sensor over the strain gauges due to its simple instrumentation. For current investigation, the piezofilm and strain gauge sensors have mounted on same stress force balance to evaluate the response time as well as accuracy of predicted force at the same instant. However, these force balance need to be calibrated for inverse prediction of the force from recorded responses.
Technical Paper

Numerical Investigation of Aerodynamic Characteristics on a Blunt Cone Model at Various Angles of Attack under Hypersonic Flow Regimes

2024-06-01
2024-26-0446
The study of aerodynamic forces in hypersonic environments is important to ensure the safety and proper functioning of aerospace vehicles. These forces vary with the angle of attack (AOA) and there exists an optimum angle of attack where the ratio of the lift to drag force is maximum. In this paper, computational analysis has been performed on a blunt cone model to study the aerodynamic characteristics when hypersonic flow is allowed to pass through the model. The flow has a Mach number of 8.44 and the angle of attack is varied from 0º to 20º. The commercial CFD solver ANSYS FLUENT is used for the computational analysis and the mesh is generated using the ICEM CFD module of ANSYS. Air is selected as the working fluid. The simulation is carried out for a time duration of 1.2 ms where it reaches a steady state and the lift and drag forces and coefficients are estimated. The pressure, temperature, and velocity contours at different angles of attack are also observed.
Technical Paper

Development of simulation methodology to evaluate Leaf Spring strength and predict the Leaf Interface stresses and correlating with test

2024-04-09
2024-01-2735
Leaf Springs are commonly used as a suspension in heavy commercial vehicles for higher load carrying capacity. The leaf springs connect the vehicle body with road profile through the axle & tire assembly. It provides the relative motion between the vehicle body and road profile to improve the ride & handling performance. The leaf springs are designed to provide linear stiffness and uniform strength characteristics throughout its travel. Leaf springs are generally subjected to dynamic loads which are induced due to different road profiles & driving patterns. Leaf spring design should be robust as any failure in leaf springs will put vehicle safety at risk and cost the vehicle manufacturer their reputation. The design of a leaf spring based on conventional methods predicts the higher stress levels at the leaf spring center clamp location and stress levels gradually reduce from the center to free ends of the leaf spring.
Technical Paper

Effect of Baffle Height on the in-Cylinder Air-Fuel Mixture Preparation in a Gasoline Direct Injection Engine – A Computational Fluid Dynamics Analysis

2024-04-09
2024-01-2697
In-cylinder fluid dynamics enhance performance and emission characteristics in internal combustion (IC) engines. Techniques such as helical ports, valve shrouding, masking, and modifications to piston profiles or vanes in ports are employed to achieve the desired in-cylinder flows in these engines. However, due to space constraints, modifications to the cylinder head are typically minimal. The literature suggests that introducing baffles into the combustion chamber of an IC engine can enhance in-cylinder flows, air-fuel mixing, and, subsequently, stratification. Studies have indicated that the height of the baffles plays a significant role in determining the level of improvement in in-cylinder flow and air-fuel mixing. Therefore, this study employs Computational fluid dynamics (CFD) analysis to investigate the impact of baffle height on in-cylinder flow and air-fuel mixing in a four-stroke, four-valve, spray-guided gasoline direct injection (GDI) engine.
Technical Paper

Enhancement of Polycrystalline Silicon Solar Cell’s Efficiency through Electrospinning Coating Using Erbium Oxide

2024-02-23
2023-01-5163
The current research focuses on enhancing the performance of Si solar cells by using Er2O3 (Erbium Oxide) in cubic crystalline nature serves as an anti-reflection coating material. An anti-reflective coating aims to improve the Efficient Power Conversion (EPC) of polycrystalline silicon wafers solar cells (PSSC) utilised in solar roof panels of the automotive sector. It also exhibits superior light transmittance and least light reflectance, which eventually leads to the increase EPC. Erbium oxide helps to convert low energy photons into high energy photons. The incident photons, which lies on the solar cell, gradually losses its energy to travel in a denser medium and dissipate in the form of heat energy. In order to overcome the rate of reflection, current research aims in synthesis of erbium oxide nanosheets using electrospinning deposition technique for varying deposition timings such as 1, 1.5 and 2 hours.
Technical Paper

Soot Sensor Elimination with DPF Substrate Failure Monitoring

2024-01-16
2024-26-0153
The automobile industry is going through one of the most challenging times, with increased competition in the market which is enforcing competitive prices of the products along with meeting the stringent emission norms. One such requirement for BS6 phase 2 emission norms is monitoring for partial failure of the component if the tailpipe emissions are higher than the OBD limits. Recently PM (soot) sensor is employed for partial failure monitoring of DPF in diesel passenger cars.. PM sensor detects soot leakage in case of DPF substrate failure. There is a cost factor along with extensive calibration efforts which are needed to ensure sensor works flawlessly. This paper deals with the development of an algorithm with which robust detection of DPF substrate failure is achieved without addition of any sensor in the aftertreatment system.
Technical Paper

A Real-World Range Testing and Analysis Methodology Development for Battery Electric Vehicles

2024-01-16
2024-26-0124
Range anxiety is one of the major factors to be dealt with for increasing penetration of EVs in current Automotive market. The major reasons for range anxiety for customers are sparse charging infrastructure availability, limited range of Electric vehicles and range uncertainty due to diverse real-world usage conditions. The uncertainty in real world range can be reduced by increasing the correlation between the testing condition during vehicle development and real-world customer usage condition. This paper illustrates a more accurate test methodology development to derive the real-world range in electric vehicles with experimental validation and system level analysis. A test matrix is developed considering several variables influencing vehicle range like different routes, drive modes, Regeneration levels, customer drive behavior, time of drive, locations, ambient conditions etc.
Technical Paper

A Universal Steering Grommet Design Approach to Enhance the Passenger Cabin NVH Performance

2024-01-16
2024-26-0202
As a car OEM, we continuously strive to set the bar for competitors with every product. Consumer travel experiences are enhanced by increasing passenger cabin silence. There is only one steering system opening in the firewall panel, which is used for allowing intermediate shaft's fitment on the pinion shaft of the steering gear. The steering grommet is the sole component that covers the firewall cut-out without disrupting steering operations, which has a substantial impact on the NVH performance of the vehicle. It is typically used in cars to eliminate engine noise and dust entering to passenger compartment. The part is assembled inside the vehicle where the steering intermediate shaft passing through BIW firewall panel. We use a bearing, plastic bush, or direct rubber interference design in the steering grommet to accommodate the rotational input the driver provides to turn the automobile.
Technical Paper

Foam and FRP Sheets Packaging for Headliner Stiffness at Curtain Airbag Area

2024-01-16
2024-26-0008
As we all know, automotive headliners are an essential component of any car’s interior as they cover all the internal components and provide a clean and finished look. Headliners not only increase the aesthetic appeal of a car’s interior, but also acts as an insulation and sound absorption source. As per the latest Government norms, Curtain Airbag (henceforth called as CAB) has been made mandatory and this change calls for the corresponding changes in the Headliner packaging of all passenger vehicles. In general, curtain air-bag deployment calls for a twist open of Headliner at lateral sides (a portion below Hinge-line) during the deployment. This enables the inflated airbag to flow inside the passenger cabin to protect the passenger from any injury. Conventionally no components are packaged below the hinge-line area of headliner to avoid obstruction for CAB deployment and any part fly-off concerns.
Technical Paper

Integration of Seat-Belt Web-Guide Functionality in Trim Part

2024-01-16
2024-26-0018
Restraint systems in automotives are inevitable for the safety of passengers. Seat belts are one such restraint system in automotives that prevent drivers and passengers from being injured during a crash by restraining them back. Seatbelt on automotives has interface with Body-in-white (henceforth called as BIW) and Trim parts in-order to serve its purpose at vehicle level. One such interface part of seat belt is the web guide, which assists and ensures the nylon web’s smooth motion at different seat track positions. Web-guides on automotives ensure the flawless motion of seat belt web at pillar trim areas. In this paper, we are discussing alternate ways of assisting the seat belt web without the web-guide as a separate part. In-order to assist and ensure the motion of nylon web in its trajectory, we have extended the flange of the pillar trim involved.
Technical Paper

RAMP Bracket Angle Optimization Coupled with Improved Head Room

2024-01-16
2024-26-0016
Restraint systems in automotives are inevitable for the safety of passengers. Curtain airbag is one such restraint system in automotives that reduces the risk of injury to passengers during crash, without which head injury is inevitable during side crash of a vehicle. So successful deployment of curtain airbag (henceforth called as CAB) is very important in automotive safety during crash. This paper dwells about the optimization done in ramp bracket angle with successful deployment of curtain airbag. This optimization has paved the way for increasing the head-roominess by ~15% and to respect the safety and styling intent in the vehicle successfully. Providing a ramp bracket at the lower bottom side of CAB guides the airbag successfully during deployment. Ramp bracket angle plays a vital role in guiding the airbag inside the passenger’s cabin without any obstruction.
Technical Paper

Optimization of Trim Clip Design for Performance Improvement

2024-01-16
2024-26-0367
As customers are inching towards adoption of electric vehicles as an alternative to internal combustion engines, automotive OEM’s will have to embrace this change and equip with new product development process. When it comes to Electric Vehicle (EV) in comparison with Internal Combustion Engine (ICE), NVH plays a major differentiator for vehicle refinement. Squeak and rattles will account for 20-25% of overall in-cabin noise source in an electric vehicle, most of which is observed from interior trims. Trims are mounted using small plastic clips which function as attachments and play a significant role in part retention and part integrity during normal operation and in case of any transient events. The engineering specifications for selecting a clip is force in newtons and it is mostly driven by ease of assembly, serviceability, and durability. A single DOF system with a specimen mass is developed and stiffness and damping are calculated based on transmissibility.
Technical Paper

Thermal Design & Multi-Objective Optimization of On-Board Chargers in Electric Vehicles

2024-01-16
2024-26-0304
For the foreseeable future, On-Board Charging will be a critical feature for all EVs, as it allows greater flexibility when charging vehicles from common power points and dedicated EVSEs. The OBC (On-Board Charger) has no function while the vehicle is moving; at the same time, heavy or large OBC reduces range. So, designers must design OBCs that are both energy efficient and lightweight. In addition to surviving the rigors of the automotive environment, such as heat and vibrations, they must also be cost-competitive. Designing OBCs encapsulating multiple objectives thus becomes a necessity. However, current methods often use the “most important” objective and transform other objectives into constraints that do not truly reflect the tradeoffs among all possible designs. Simulating Multi-Objective Optimization methods allow for an in-depth exploration of the solution and tradeoffs.
Technical Paper

Investigation of Real-World Crash Using an Accident Reconstruction Methodology Employing Crash Test Data

2024-01-16
2024-26-0288
Automotive crash data analysis and reconstruction is vital for ensuring automotive safety. The objective of vehicle crash reconstruction is to determine the vehicle's motion before, during, and after the crash, as well as the impact on occupants in terms of injuries. Simulation approaches, such as PC CrashTM, have been developed to understand pre-crash and post-crash vehicle motion, rather than the crash phase behavior. Over the past few decades, crash phase simulations have utilized vehicle finite element models. While multibody simulation tools are suitable for crash simulations, they often require detailed crash test data to accurately capture vehicle behavior, which is not always readily available. This paper proposes a solution to this limitation by incorporating crash test data from databases, such as NHTSA, Global NCAP, consumer rating reports, and videos, along with a multibody-based approach, to conduct crash phase simulations.
Technical Paper

Mechanical Control Cable Modeling and Simulation to Predict the Load Loss and Deformation

2023-11-10
2023-28-0168
Mechanical control cables or Bowden cables are widely used in various applications for push-pull actions of mechanical systems. In mid-segment tractors, the linkage systems are designed along with control cables to actuate controls such as throttle, braking, transmission shift, position control, etc. due to its design flexibility. Output force and travel efficiency are two major performance parameters that depend on the routing, cable design composition, friction material, load transfer, etc. Virtual simulations can be used to predict cable performance and efficiency. There are different methodologies currently used to model the cable. These available methods can accurately predict either performance or travel efficiency. There is no method available in-house to predict both these parameters. In this paper, a new cable modeling method is proposed by authors using multi-body simulation (MBS) software MSC ADAMS.
Technical Paper

Reduction in Synchronizer Ring Wear and Improving the Cone Torque Generation by Enhancing the Lapping Operation Using Statistical Technique

2023-11-10
2023-28-0116
In automotive manual transmission gearboxes, the synchronizer rings play a vital role in gear shift operations. The efficiency of the synchronizer ring depends upon the frictional surface geometry. The critical parameter is the synchronizer ring frictional surface circularity. The circularity deviation causes higher synchronizer ring wear and poor cone torque generation. With the current manufacturing methods and the thickness of the synchronizer ring, circularity improvement is a challenge. The synchronizer ring thread turned part is lapped to improve the circularity. Reduction in circularity can be improved by optimizing the lapping operation. In this work, an optimal lapping condition was developed using statistical methods. Taguchi DOE was used to analyze the different parameter combinations along with the noise parameter – different ranges of circularity variation in turning operation. This helps to find the best lapping parameter settings to improve the reduction in circularity.
Technical Paper

Effect of Temperature on Synchronizer Ring Performance

2023-11-10
2023-28-0054
The brass synchronizers are not resistant to abusive conditions of gearbox operations, but they are very durable and cheap when used on their favorable material property working limit. The main failure which can occur in the gearbox due to the synchronizer is crash noise. During gear shifting the gear crash will create high discomfort for the driver and must apply high force to change the gears. The main factors which contribute to the crash phenomenon are the insufficient coefficient of friction, high drag in the system, and high wear rate of the synchronizer rings before the intended design life of the synchronizer. The brass synchronizers were tested on the SSP-180, ZF synchronizer test rig to know the effect of the synchronizer performance parameters like the coefficient of friction, sleeve force, slipping time as well as durability parameters like wear rate when the operating temperature of the oil is changed.
Technical Paper

Cold Condition N to 1 Gearshift Blockage Analysis in a Manual Transmission Gearbox

2023-11-10
2023-28-0053
Manual transmissions are the preferred transmission for drivers who love sporty gear shifts. Manual transmission vehicles are cheaper, very efficient, and offer quick gear shifts. Worldwide manual transmission contributes to 36.15% and in India it contributes overall 80% of today's market share. The customers expect a very smooth gearshift which is a challenge to achieve in all ambient temperatures. In a gear shift event, the synchronizers synchronize the speed of the gears. The force applied at the gear shift knob, generates the cone torque and stops the rotating input shaft for the Neutral (N) to 1 gear shifting. The early morning gear shifts have high gear shift effort. This effort is getting reduced with the increase in temperature. This is due to the drag in the gearbox which is inevitable. This work focuses on improving the very first gear shift event of N to 1 after the engine crank from cold (8°) to hot (80°) condition.
Technical Paper

Synchronizer Spring Failure Due to Gear Shift Loads - Investigation and Design Recommendations

2023-11-10
2023-28-0051
In manual transmission, the vital function of synchronizer pack is to synchronize the speed of the target gear for smooth gear shifting. The synchronizer pack consists of various elements and each of these elements has specific function. These elements are baulk rings, shifter sleeve, hub, synchro key, synchro springs etc. The function of synchronizer can be affected due to failure of any one of these elements. This work focuses on the failure of synchronizer pack due to synchro spring failure. The function of synchronizer spring is to exert the required force, to index the synchronizer ring before the movement of shifter sleeve over synchronizer ring. During the shifting of shifter sleeve from one gear to another gear, the springs deflect in both shifting directions. This causes fatigue failure of synchronizer springs. The manufacturing variations, and part quality issues results in very early fatigue failure of synchronizer springs.
Technical Paper

Numerical Investigation on the Design and Development of Automotive Exhaust Muffler –A Case Study

2023-11-10
2023-28-0085
Attaining better acoustic performance and back-pressure is a continuous research area in the design and development of passenger vehicle exhaust system. Design parameters such as tail pipe, resonator, internal pipes and baffles, muffler dimensions, number of flow reversals, perforated holes size and number etc. govern the muffler design. However, the analysis on the flow directivity from tail pipe is limited. A case study is demonstrated in this work on the development of automotive muffler with due consideration of back pressure and flow directivity from tail pipe. CFD methodology is engaged to evaluate the back pressure of different muffler configurations. The experimental and numerical results of backpressure have been validated. The numerical results are in close agreement with experimental results.
X