Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Parametric Modelling & High-Fidelity Algorithms for Vehicle Weight Estimation for Optimized Concept Vehicle Architecture

2019-10-11
2019-28-0036
The concept definition phase of typical vehicle development focuses on the architecture definition and optimization based on different constraints/requirements. With the focus on Sustainability, the architecture optimization process must include “Light-weighting” as an optimization criterion. With only concept vehicle architecture available, the vehicle weight estimation becomes judgmental & inaccurate. This paper aims to address this deficiency with a new analytical approach for vehicle weight estimation. The new approach for vehicle weight estimation is a “bottom-up” approach using parametric models for each system weight with the inputs being the relevant vehicle specifications driving the system engineering. For size/shape-driven (rather than functional) systems, the models are content-based & segment-based. The parametric models are then iterated for multiple architecture concepts & specifications and the optimum concept (meeting all functional & business constraints) is chosen.
Technical Paper

Systematic Approach to Design Hand Controlled Parking Brake System for Passenger Car

2015-01-14
2015-26-0078
This paper is an attempt to compile a systematic approach which can be easily incorporated in the product development system used in the design and development of parking brake systems for passenger cars having rear drum brakes, which in turn can effectively reduce the lead time and give improved performance. The vehicle GVW, percentage gradient and maximum effort limits (as per IS 11852 - Part 3), tire and drum brake specifications were taken as front loading. This data is used for target setting of functional and engineering parameters, such as lever pull effort, lever ratio and angular travel of lever. Design calculations were performed to obtain theoretical values of critical parameters like lever effort and travel. The comparison between target and theoretical values give the initial confidence to the system engineer. Further, the outcome was taken to conceptualize the hard points of lever on vehicle for ergonomics.
Technical Paper

A Particle Swarm Optimization Tool for Decoupling Automotive Powertrain Torque Roll Axis

2014-04-01
2014-01-1687
A typical powertrain mount design process starts with performing the system calculations to determine optimum mount parameters, viz. position, orientation and stiffness values to meet the desired NVH targets. Therefore, a 6 degrees of freedom lumped parameter system of powertrain and mounts is modelled in Matlab®. The approach is to decouple the torque roll axis mode from the remaining five rigid body modes so that the response to the torque pulses is predominantly ‘oscillations about Torque Roll Axis’. This is achieved by optimizing the above mount parameters within specified constraints so that ‘Rotation about the torque roll axis’ is one of the natural modes of vibration. The tool developed here uses ‘Particle Swarm Optimization(PSO) algorithm’ because of its ease of implementation and better convergence to the solution. The algorithm is programmed in TK solver®.
X