Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Energy Impact Analysis of Switchable Coolant Pump in a High Power Density Diesel Engine

2021-10-01
2021-28-0279
Over the years, Internal Combustion engines have evolved drastically from large naturally aspirated engines to small sized forced aspiration engines which have a power output comparable to that of higher capacity engines. Engine downsizing has become more prominent in the present world due to higher focus being exerted on Fuel Economy and tighter emission norms. In the process of achieving these highly efficient engines, their cooling systems are also designed to handle the higher thermal operating conditions. This leads to a negative impact on the cold NEDC cycle by resulting in a longer warmup periods to get the engine upto its optimum operating temperature. This has a major effect on both the combustion efficiency as well as the frictional resistance of the engine. Switchable coolant pumps are one way to address this problem by creating zero flow conditions to warmup the engine by restricting any unnecessary heat rejection and improving the in-cylinder temperature.
Technical Paper

Thermodynamic Analysis of Turbocharger for a High Power Density Diesel Engine

2019-01-09
2019-26-0051
Passenger cars claim their presence in market by its pick up, top speed and maximum power of the engine. The study described in this paper is focused on improving the low-end performance of a 4-cylinder 1.6 L diesel engine while meeting the targeted maximum power. To meet the cause turbocharger works as an important element of the engine. A comparative study between regulated two stage turbocharger (R2S) and variable geometry turbocharger (VGT) shows that on a 4-cylinder engine VGT is superior by providing higher boost at 1000 engine rpm full load, than R2S, while in 3-cylinder (same displacement) the opposite effect can be seen. After simulations and iterations, it was confirmed that the in 4-cylinder the exhaust pulse cancellation were leading to a lesser exhaust energy at the turbine inlet. This pulse interaction leads to higher residual gas content which affects the low-end performance.
X