Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Investigation of Solenoid-Controlled Piston Cooling Jet Benefits for a 1.5l, 3 Cylinder Tcic Diesel Engine

2023-04-11
2023-01-0230
The fuel economy of the internal combustion engine becomes progressively critical, especially with the stringent standards set by the government. To meet the government norms such as CAFE (Corporate Fuel Average Economy), different technologies are being explored and implemented in internal combustion engines. Several technologies such as variable oil pump, map controlled PCJ (Piston Cooling Jet), variable or switchable water pump & ball bearing turbocharger etc. This study investigates the effectiveness of implementing map-controlled PCJ implemented for a 1.5-litre 3-cylinder diesel engine. PCJ’s are major consumers of oil flow and map-controlled PCJ is used by many OEM’s e.g., Ford EcoSport to reduce the oil pump flow. In map-controlled PCJ, the oil to the PCJ is controlled using a solenoid valve. The solenoid valve can be completely variable or ON/OFF type. In our application, the ON/OFF type solenoid value is used to regulate the oil flow to PCJ.
Technical Paper

Chain Load Optimization through Fuel Pump Lobe Phasing and CAE Simulations for a BS6 Compliant Diesel Engine

2021-10-01
2021-28-0163
The introduction of CAFE (Corporate Average Fuel Economy) norms has put a lot of importance on improving the fuel economy of passenger car vehicles. One of the areas to improve the fuel economy is by reducing engine friction. Camshaft drive torque reduction is one such area that helps in engine friction reduction. This paper explains the camshaft drive torque optimization work done on a passenger car Diesel engine with DOHC (double overhead camshaft). The exhaust camshaft of the engine drives the high-pressure Fuel Injection Pump (FIP) in addition to valve actuation. Camshaft drive torque is reduced by reducing the chain load. This is done through optimum phasing of the FIP lobe that drives the fuel injection pump and the cam lobe actuating the exhaust valves. Additional boundary condition for the phasing is ensuring that the FIP lobe is in the fall region of its profile while the piston is at TDC. This helps in avoiding rail pressure fluctuation.
X