Refine Your Search

Topic

Author

Search Results

Technical Paper

Reduction of Carbon Footprint Using Additive Inspired Design in Tractor Hydraulic Systems

2024-01-16
2024-26-0070
Tractor is primarily used for Haulage and agricultural applications due to this high tractive effort. A tractor usage has been increased in recent times for its wide range of implement applications. Considering environmental factors and sustainability, restrictions are set on the Tractor emissions. This brings new challenge in the Tractor industry to reduce the carbon footprint. Conventional casting process involves preparation of die & mold, material removal and machining in the final stage to get the desired final product. Alternatively Additive Manufacturing Process (AMP) helps in creation of lighter and stronger parts by adding material layer by layer. By saving the material, weight of the overall Tractor is reduced which helps in reducing carbon footprint. But the disadvantage of this process is the limited availability and high cost of AMP material and lack of infrastructure/skill set for operation handling.
Technical Paper

Weight and Drivetrain Optimization via Fuel Pump & Vacuum Pump Drive Integration on Engine Camshaft in a Pushrod Type Valve Actuated Engine

2024-01-16
2024-26-0046
In the realm of modern powertrains, the paramount objectives of weight reduction, cost efficiency, and friction optimization drive innovation. By streamlining drive trains through component minimization, the paper introduces a groundbreaking approach: the integration of fuel pump and vacuum pump drive systems into the main camshaft of a two-valve-per-cylinder push-rod actuated 4-cylinder diesel engine. This innovation is poised to concurrently reduce overall weight, lower costs, and minimize drive losses. The proposed integration entails the extension of the camshaft with a tailored slot, accommodating a three-lobed cam composed of advanced materials. This novel camshaft configuration enables the unified propulsion of the oil pump, vacuum pump, fuel pump, and valve train, effectively consolidating functions and components.
Technical Paper

Model Based Charge Control for 3-Cylinder TGDI Miller Engine Containing Variable Geometry Turbocharger

2024-01-16
2024-26-0043
For ensuring environmental safety, strong emphasis on CO2 pollution reduction is mandated which led to evolution of miller cycle engines. However, the inherent Miller engine characteristic is the lower volumetric efficiency when compared to otto engines because of which small turbo chargers with variable geometry turbines are used to induct air into the engine. With miller engine and VGT turbo charger combination arises the challenges of charge controllability because of lower inertia and reduced vane control area. With conventional turbo charger control methods, the response time is slow thereby leading to turbo lag or severe over boosting, this is overcome by accurate engine modelling and using the same as input for charger control.
Technical Paper

Oil Aerosol Emission Optimization Using Deflectors in Turbo Charger Oil Drain Circuit

2024-01-16
2024-26-0047
Closed crankcase ventilation prevent harmful gases from entering atmosphere thereby reducing hydrocarbon emissions. Ventilation system usually carries blowby gases along with oil mist generated from Engine to Air intake system. Major sources of blowby occurs from leak in combustion chamber through piston rings, leakage from turbocharger shafts & leakage from valve guides. Oil mist carried by these blowby gases gets separated using separation media before passing to Air Intake. Fleece separation media has high separation efficiency with lower pressure loss for oil aerosol particles having size above 10 microns. However, efficiency of fleece media drops drastically if size of aerosol particles are below 10 microns. Aerosol mist of lower particle size (>10 microns) generally forms due to flash boiling on piston under crown area and from shafts of turbo charger due to high speeds combined with elevated temperatures. High power density diesel engine is taken for our study.
Technical Paper

Headliner Composition Optimization without Compromising the Safety and Performance

2024-01-16
2024-26-0190
Reducing material wherever there is a possibility in automobile industry is inevitable for weight and cost saving. This paper explains about the possibilities of optimizing the material composition of automotive Headliners (also called as Roof liners) without affecting the performance and safety criteria. In this paper, we are targeting at optimizing the individual constituents of a composite Headliner. A conventional Headliner comprises of many sandwich layers of which PU foam shares the major percentage of the composition contributing to 80% of the Headliner thickness. In this paper, we are discussing about the optimization done in Headliner sandwich constituents without affecting the core performance parameters of headliner such as curtain airbag deployment, ergonomic regulations, drop test etc. By incorporating this change, without significant changes in other layers, overall weight reduction of ~24% and overall cost reduction of ~24% is achieved.
Technical Paper

Study and Analysis of Dynamic Seat Pressure Distribution by Human Subjects during Vehicle Running State on Test Tracks

2024-01-16
2024-26-0354
The purpose of this study is to conduct dynamic seat pressure mapping on vehicle seats during its operation on different test tracks under ambient environmental conditions for a defined speed. The test track comprises of pave roads, high frequency track, low frequency track and twist track. The variations in pressure distribution on seat during diverse road load inputs help to understand the seat cushion and back comfort for unique percentiles of human subjects ranging from 50th to 95th percentile population. For conducting the study, a sport utility vehicle (SUV) loaded with leatherette seats has chosen. Totally six participants (human subjects), five male and one female selected for the study based on their BMI (Body mass index) and body morphology. Pressure mats suitable for taking dynamic load inputs and able to log the data at a defined sampling rate mounted on seats and secured properly. The pressure mats should cover the seat cushion, bolster areas and back seat completely.
Technical Paper

An Innovative and Customer Centric Approach on Validating Telematics Based Fleet Optimization Feature for Small Commercial Vehicles

2024-01-16
2024-26-0378
Commercial transportation is the key pillar of any growing economy. Light and Small commercial vehicles are increasing every day to cater the logistics demand, but there is always a gap between customer’s actual and desired operational efficiency. This is because of lack of organized fleet and efficient fleet operation. The major requirement of fleet owners is timely delivery, high productivity, downtime reduction, real time tracking, etc., Automakers are now providing fleet management application in modern LCV & SCV to satisfy the fleet operator requirement. However, any feature malfunction, consignment mismatch, wrong notification, missed alerts, etc., can incur huge loss to fleet operator and disrupt the entire supply chain. Hence it is very critical to extensively validate the telematics features in fleet management application. This paper explains the approach for exhaustive validation strategy of fleet management applications (B2B) from end user perspective.
Technical Paper

HVAC NVH Refinement in Electric Vehicle

2024-01-16
2024-26-0206
Customers expect more advanced features and comfort in electric vehicles. It is challenging for NVH engineers to reduce the vibration levels to a great extent in the vehicle without adding cost and weight. This paper focuses on reducing the tactile vibration in electric vehicle when AC is switched ON. Vibration levels were not acceptable and modulating in nature on the test vehicle. Electric compressor is used for cabin cooling and battery cooling in the vehicle. Compressor is connected to body with the help of isolators. Depending upon cooling load, the compressor operates between 1000 rpm and 8000 rpm. The 1st order vibration of compressor was dominant on tactile locations at all the compressor speeds. Vibration levels on steering wheel were improved by 10 dB on reducing the dynamic stiffness of isolators. To reduce the transfer of compressor vibration further, isolators are provided on HVAC line connection on body and mufflers are provided in suction and discharge line.
Technical Paper

Aggressive Catalyst Heating Strategy Using Advanced Mixture Formation and Combustion Timing Techniques in a GDI Engine

2021-09-22
2021-26-0185
Precise control over mixture formation withhigh fuel pressure and multiple injections allows Gasoline Direct Injection (GDI) engines to be operated satisfactorily at extreme conditions wherePort Fuel Injection (PFI) engines wouldnormally struggle due to combustion instability issues. Catalyst heating phase is one such important condition which is initiated after a cold engine start to improve the effectiveness of the three-way catalyst (TWC). For a given TWC specification, fast light-offof TWC is achieved in the catalyst heating phase by increasing the exhaust gas temperature with higher exhaust mass flow. The duration of this phase must be as short as possible, as it is a trade-off between achieving sufficient TWC light off performance and fuel efficiency.
Technical Paper

Hybrid Optimization Methodology for Flexplate of Automatic Transmission

2020-04-14
2020-01-0916
For Automatic transmission application, crankshaft torque is transferred to torque converter through flex plate. As the flex plate has no functional requirement of storing energy as in case of Manual Transmission (MT) flywheel, flex plate design can be optimized to great extent. Flex plate structure must have compliance to allow the axial deformation of torque convertor due to ballooning pressure generated inside the converter. Flex plate experiences dynamic torque and centrifugal forces due to high rotational speed. It should have compliance to accommodate the assembly misalignments with torque convertor in both axial and radial directions. In this paper, sequential and hybrid optimization techniques are described to optimize the flex plate design with stress, stiffness and mass as design constraints. The load path, corrugation length and axial stiffness of flex plate captured accurately using this hybrid optimization.
Technical Paper

Life Estimation and Thermal Management of a 48V Mild-Hybrid Battery Pack

2019-04-02
2019-01-1001
The 48V mild-Hybrid system uses a 48V Lithium - Ion battery pack to boost the engine performance, to harness recuperative energy and to supply the accessory boardnet power requirement. Thermal management of the 48V battery pack is critical for its optimal utilization to realize the mild hybrid functionality, to meet CO2 reduction targets and useful life particularly under usage in hot ambient conditions. This paper discusses the various challenges and options of thermal management for the 48V battery pack based on the usage pattern and environmental conditions. The lifetime for a passively cooled battery pack is estimated for a typical Indian usage pattern. Active-air cooling is evaluated for the thermal management of the 48V mild-Hybrid battery pack. The tradeoffs are compared in terms of availability of hybrid functions and battery life.
Technical Paper

Sound Package Development for a Vehicle in Static Condition

2019-01-09
2019-26-0174
Sound package material selection plays a vital role in maintaining passenger comfort by suppressing noise inside cabin. Sound package development in static condition minimizes the extrinsic variables which influence the measurements. The consideration of static condition favors simulation and its correlation with test data. Once correlation is achieved, simulation inputs are used for further optimization and improvements. Noise control can be done in three levels by working either on source, path or receiver. In automobiles, there are many sources of noise such as engine, tire and wind. This topic deals with quantification of various transfer paths between source and receiver location using Power Based Noise Reduction (PBNR) method. This methodology is used in both simulation and testing along with its overall scope for improvement. It is best to quantify path strength in terms of energy levels instead of mere amplitude due to its independency on external test conditions.
Technical Paper

Integration of 1D and 3D CFD Software for Cabin Cool Down Simulation

2018-04-03
2018-01-0773
This study presents a method for a cool down simulation of passenger compartments. The purpose was to integrate the 3D Computational Fluid Dynamics (CFD) software StarCCM+ with the 1D thermal management software KULI. The targets were to achieve accurate prediction of temperature diffusion inside the cabin for a transient cycle simultaneously reducing the modelling effort and CPU-time consumption. The 1D simulation model was developed in KULI and the flow field data required to simulate mass flow and diffusion inside the cabin was implemented from Star CCM+. The simulation model consists of a multi-zone cabin and models the complete refrigerant circuit consisting of evaporator, condenser, Thermal Expansion Valve (TXV) and compressor. This paper describes the process flow, definition of the inputs required and finally the validation of the simulation data with experiments.
Technical Paper

Application of Reliability Technique for Developing a Test Methodology to Validate the Engine Mounted Components for Off-Road Applications under Vibration

2017-09-29
2017-01-7004
Vibrational fatigue is a metal fatigue caused by the forced vibrations which are purely random in nature. The phenomenon is predominantly important for the components/systems which are subjected to extreme vibration during its operation. In a vehicle, an engine is the main source of vibration. The vibrational fatigue, therefore, plays a key role in the deterioration of engine mounted components. Multiple test standards and methodologies are available for validating engine mounted parts of an automobile. These might not be appropriate in the case of an off- road vehicle as the vibrational exposure of engine mounted components of an off-road vehicle is entirely different. In the case of an off-road vehicle, the engine mounted components are subjected to a comparatively higher level of vibration for a longer duration of time as compared to the passenger cars.
Technical Paper

Prediction of Engine Thermal Behavior during Emission Cycle Using 1D Four Point Mass Model

2016-04-05
2016-01-0197
The traditional approach of engine thermal behavior of engine during startup has largely been dependent on experimental studies and high fidelity simulations like CFD. However, these techniques require considerable effort, cost and time. The low fidelity simulations validated with experimental results are becoming more popular due to their ease in handling the several parameters such as cost effectiveness and quick predictive results. A four point mass model of engine thermal behavior during cold start has been developed to study the engine warm up temperature behavior. The four point mass model considers the lumped mass of coolant, mass of engine directly associated with the coolant, mass of engine oil and mass of engine directly associated with the engine oil. The advantage of four point model is to predict the coolant temperature as well as lubricant temperature during the transient warm up cycle of the engine.
Technical Paper

Scaling Model of Heat Exchangers in Automotive Air Conditioning Systems

2016-04-05
2016-01-0227
Heat exchangers are thermoregulatory system of an automotive air conditioning system. They are responsible for heat exchange between refrigerant and air. Sizing of the heat exchanger becomes critical to achieve the required thermal performance. In the present work, the behavior of heat exchanger with respect to change in size is studied in detail by developing a scaling model. The limited experiments have been conducted for 3 different condensers. Commercially available 1D tool GT Suite is used for simulations. The heat exchangers are modeled using COOL3D module of GT Suite. The experimental thermal capacities of heat exchanger are compared with the simulated values. A good agreement up to ±2.3% is found between the experiments and simulations. Then developed scaling model in GT Suite is used for predicting the thermal behavior of heat exchangers by changing the size of the heat exchanger. Scaled thermal capacities of each model is compared with the corresponding experimental results.
Technical Paper

1D Transient Thermal Model of an Automotive Electric Engine Cooling Fan Motor

2016-04-05
2016-01-0214
For the thermal management of an automobile, the induced airflow becomes necessary to enable the sufficient heat transfer with ambient. In this way, the components work within the designed temperature limit. It is the engine-cooling fan that enables the induced airflow. There are two types of engine-cooling fan, one that is driven by engine itself and the other one is electrically driven. Due to ease in handling, reduced power consumption, improved emission condition, electrically operated fan is becoming increasingly popular compared to engine driven fan. The prime mover for electric engine cooling fan is DC motor. Malfunction of DC motor due to overheating will lead to engine over heat, Poor HVAC performance, overheating of other critical components in engine bay. Based upon the real world driving condition, 1D transient thermal model of engine cooling fan motor is developed. This transient model is able to predict the temperature of rotor and casing with and without holes.
Technical Paper

In-Vehicle Visual Hindrance Free Positioning of Instrument Cluster

2015-09-29
2015-01-2838
In-vehicle displays such as an instrument cluster in a vehicle provide vital information to the user. The information in terms of displays and tell-tales needs to be perceived by the user with minimal glance during driving. Drivers must recognize the condition of the vehicle and the state of its surroundings through primarily visual means. Drivers then process this in the brain, draw on their memory to identify problem situations, decide on a plan of action and execute it in order to avoid an accident. There are visual hindrances seen in real world scenario such as obscuration, reflection and glare on the instrument cluster which prevents the vital information flow from vehicle to the driver. In order to ensure safety while driving, the instrument cluster or driver displays should be placed in an optimized location. This paper deals with how to achieve a visual hindrance free cluster position in a vehicle to protect the important information flow from the vehicle to the driver.
Technical Paper

Idle Shake Simulation and Optimization through Digital Car Model

2015-06-15
2015-01-2368
Idle NVH (Noise Vibration Harshness) is one of the major quality parameters that customer looks into while buying the vehicle. Idle shake is undesirable vibrations generated from Engine while it is in idling condition. These low frequency vibrations affects both driver and passenger comfort. Vibrations are perceived by customer through the interfaces such as the seats, floor, and steering wheel. The frequencies of vibration felt by customer ranges between 10-30 Hz and varies based on engine configurations. There are two factors that are critical to the vehicle idle NVH quality, 1. Engine excitation force and 2. Vehicle sensitivity to excitation forces (Transfer function). Even though the engine excitation forces are governed by cylinder combustion process inside the cylinder and engine mass, it is also largely affected by how well the engine and transmission are supported on vehicle through isolators.
Technical Paper

Low Temperature Thermal Energy Storage (TES) System for Improving Automotive HVAC Effectiveness

2015-04-14
2015-01-0353
The prime focus of automotive industries in recent times is to improve the energy efficiency of automotive subsystem and system as whole. Harvesting the waste energy and averaging the peak thermal loads using thermal energy storage (TES) materials and devices can help to improve the energy efficiency of automotive system and sub-system. The phase change materials (PCM) well suit the requirement of energy storage/release according to demand requirement. One such example of TES using PCM is extended automotive cabin comfort during vehicle idling and city traffics including start/stop of the engine at traffic stops. PCM as TES poses high density and capacity in thermal energy storage and release. It is due to latent heat absorption and release during phase change. Generally the latent heat of a material compare to it sensible heat is much higher, almost an order of 2. For example, latent heat of ice is almost 160 times higher than sensible heat for a kelvin temperature rise of ice.
X