Refine Your Search

Topic

Author

Search Results

Technical Paper

Finite Element Analysis and Correlation with Physical Test of Tractor Hood Bang Endurance Test

2024-01-16
2024-26-0071
Tractors primarily serve agricultural functions but are also employed in various other applications such as loading, construction, and hauling. Tractors comprise several key assembly, including the engine, transmission, front hood assembly, and skid, among others. The hood is a critical assembly of the tractor, enclosing the engine and its associated parts. It is constructed from sheet metal with a 'Class A' surface finish for aesthetic purposes. The Hood is locked using latch mechanism mounted on the tractor chassis. The primary function of the hood is to facilitate the opening and closing of the hood assembly during servicing, and it often undergoes rough handling. Therefore, it becomes imperative to validate the durability of the hood assembly to ensure it can withstand the real-world conditions it encounters during these operations.
Technical Paper

SUV Multi-Link Rigid Axle Control Links Optimization for Ride and Handling Improvement

2024-01-16
2024-26-0048
In automotive world role of suspension system is to absorb vibrations from the road, and to provide stability while vehicle is going over bumps or uneven roads, cornering, acceleration and braking etc. For body on frame SUVs which are typically characterized by high center of gravity, it is quite critical to find best balance in ensuring stability of the vehicle and having comfortable ride performance. Rigid axle rear suspension is quite a typical choice in such vehicles, wherein lower and upper control links are two important components subjected to lateral, longitudinal, and vertical loads. These links allow the vehicle to move smoothly throughout the entire range of suspension travel. Kinematics and compliance optimization of these links is a major factor in definition of ride-handling performance of the vehicle.
Technical Paper

Methodology for Jury Evaluation and Target Setting for Passenger Vehicle Operational Sound Quality

2024-01-16
2024-26-0227
In automotive market, with competitive car prices, build quality of a car will be a major distinguishing factor. Consumer's need for acoustic comfort has evolved from the removal of annoying noises to perceived sound quality. Operational sounds from electromechanical systems like sunroof system, window regulator, door lock system, HVAC etc. directly interact with users’ senses. The perceived acoustics comfort of these sounds are direct indicators of vehicle character and can influence customer’s buying decision. With the reduction in product development time and stringent cost constraints, a proper structured target setting methodology to benchmark & evaluate these operational sounds is crucial. In this paper, such a target setting methodology is proposed and discussed for operational sound quality evaluation. Electromechanical noises from various vehicles are measured using binaural head measurement system.
Technical Paper

An Innovative and Customer Centric Approach on Validating Telematics Based Fleet Optimization Feature for Small Commercial Vehicles

2024-01-16
2024-26-0378
Commercial transportation is the key pillar of any growing economy. Light and Small commercial vehicles are increasing every day to cater the logistics demand, but there is always a gap between customer’s actual and desired operational efficiency. This is because of lack of organized fleet and efficient fleet operation. The major requirement of fleet owners is timely delivery, high productivity, downtime reduction, real time tracking, etc., Automakers are now providing fleet management application in modern LCV & SCV to satisfy the fleet operator requirement. However, any feature malfunction, consignment mismatch, wrong notification, missed alerts, etc., can incur huge loss to fleet operator and disrupt the entire supply chain. Hence it is very critical to extensively validate the telematics features in fleet management application. This paper explains the approach for exhaustive validation strategy of fleet management applications (B2B) from end user perspective.
Technical Paper

Countermeasures for Low Frequency Boom Noise Reduction in Electric Vehicle

2024-01-16
2024-26-0214
Electric vehicles (EV) are much quieter than IC engine powered vehicles due to less mechanical components and absence of combustion. The lower cabin noise in electric vehicles make customers sensitive to even small noise disturbances in vehicle. Road boom noise is one of such major concerns to which the customers are sensitive in electric vehicles. The test vehicle is a front wheel driven compact SUV powered by electric motor. On normal plain road, noise levels are acceptable but when the vehicle has been driven on coarse road, the boom noise is perceived, and the levels are objectionable. Multi reference Transfer Path Analysis (MTPA) is conducted to identify the path through which maximum forces are entering the body. Based on MTPA, modifications are proposed on the suspension bushes and the noise levels were assessed.
Technical Paper

Analytical Tool for Design & Optimization of Double Isolation Mounting System for Electric Powertrain

2024-01-16
2024-26-0125
As the world rapidly moves from IC engine powered vehicles to the ‘more sustainable’ electrified vehicles, the Powertrain Mounting System needs to be re-engineered to meet refinement requirements of customer. Electric vehicles are quieter but due to lack of the “masking effect”, are sensitive to minor disturbances that are perceived to be objectionable by passengers. Also, E-powertrains are lighter, produce higher torque at low rpms & operate at higher rpms which calls for different countermeasures for mounting systems compared to conventional single isolation 3-point mounting system as used in IC engines. Double isolation mounting system, where powertrain is connected to an auxiliary mass (sub frame/cradle) via mounts, which is suspended to the vehicle body via subframe bushes results in 12 rigid body modes, 6 for each mass, is highly effective in lowering the transmission of vibration at high frequencies.
Technical Paper

Investigation of Synchronizer Ring Failure in a Commercial Vehicle Transmission

2024-01-16
2024-26-0383
The commercial vehicles market is dominated by manual transmission, due to lower ownership cost. Generally, commercial vehicles are used in large numbers by the fleet owners. The transmission endurance life is very important to a vehicle owner. On the other hand, driver fatigue can be reduced with a smooth gear change process. The gear change process in a manual transmission is carried out with the help of the synchronizer pack. The crucial function of a synchronizer pack in an automotive transmission is to match the speed of the target gear for smooth gear shifting. In a transmission, the loose and the weakest part is the synchronizer ring. The failure of the synchronizer affects smooth gear shifting and it also affects the endurance life of the transmission. The synchronizer ring can fail due to poor structural strength, synchronizer liner wear, synchronizer liner burning, etc.
Technical Paper

Evaluation of Fretting Phenomenon in Gearbox and Allied Failures

2022-03-29
2022-01-0648
This paper takes a review of fretting phenomenon on splines of the engaging gears and corresponding splines on shaft of automotive transmission and how it leads to failure of other components in the gearbox. Fretting is a special wear process which occurs at the contact area of two mating metal surfaces when subject to minute relative oscillating motion under vibration. In automotive gearbox, which is subjected to torsional vibrations of the powertrain, the splines of engaging gears and corresponding shaft may experience fretting, especially when the subject gear pair is not engaged. The wear debris formed under fretting process when oxidizes becomes very hard and more abrasive than base metal. These oxidized wear particles when comes in mesh contact with nearby components like bearings, gears etc. may damage these parts during operation and eventually lead to failure.
Technical Paper

Effect of Steel Wheel Disc Hat Profile and Vent Hole Shape on Fatigue Life in Cornering Test

2021-04-06
2021-01-0934
Automotive steel wheel is a critical component for human safety. For validating steel wheel various tests will be performed at component and vehicle level. Cornering test performed at vehicle level is one of the tests, where wheel will be validated for high cornering loads. Cornering test performed at vehicle level consists of three different events i.e., rotations of vehicle in track1, rotations of vehicle track 2 and rotations of vehicle in track3. As wheel will experience different loading in each of the events of cornering test, correlating the virtual Finite Element Analysis (FEA) with physical test is quite challenging. If in FEA we can predict the damage and life very near to the physical validation, we can create a safe wheel for high cornering loads without any test concerns. Vent hole shape and Hat depth are two important aspects in wheel disc design. Vent hole shape and size will influence the heat dissipation of braking.
Technical Paper

Evaluation of Hardtop Roof Mounting Schemes for High Speed Performance and Noise

2021-04-06
2021-01-0292
Customer comfort has been at the core of any vehicle design. A segment of vehicle wherein the provision given for roof to be removed to enhance the customer experience. A similar vehicle is the subject matter for the evaluation here. The vehicle being off-roader, customer buying such vehicles are passionate about these lifestyle vehicle’s performance aspects. The roof components are plastic and are bolted with the BIW structure with sealing in place at the interface. The windshield angle being close to vertical, there is a tendency for flow separation at the front tip of roof, while vehicle driven at speed. This creates significant pressure difference across the roof surface, leading to vertical deformation of roof between the bolted mounts. In case the magnitude of deformations not controlled, the reduced sealing effectiveness lets air gushing in the cabin and make noise which can be audible to customer.
Technical Paper

Passenger Car Door Closing Effort Prediction Using Virtual Simulation and Validation

2021-04-06
2021-01-0333
In the automobile industry, the door closing effort spells out the engineering and quality of the vehicle. After the visual impact a vehicle has on the customer, the doors are most likely the very first part of the vehicle he/she encounters, to enter and exit the vehicle. One of the customer’s very first impressions about the quality of the car is given by the behavior of the doors when opening and closing, the swinging velocity and the energy that is required to obtain a full latching that the door makes when closed by the user. Door closing effort gives an indication of how good or bad the vehicle is engineered. The purpose of this paper is to propose modifications in the door system which help in reduction of door closing effort or velocity by two different methods, EZ Slam Door and Bungee Rope. In this paper, parameters like hinge friction, hinge axis inclination, sealing, latch and air bind effect are analyzed which affect door closing effort.
Technical Paper

BIW Multidisciplinary Design Optimization (MDO) with Equivalent Static Load Method - Quick MDO Methodology

2021-04-06
2021-01-0287
Multidisciplinary Design Optimization (MDO) of an automobile body structure is a challenging task as it involves multiple, often conflicting requirements of safety, durability & NVH. Conventionally MDO process requires running large number of design of experiments (DOE) to explore the full design space and to build response surface for optimization. As the safety simulations are highly nonlinear in nature, they typically require significant amount of computational time and resources. Hence the conventional MDO approach is too expensive if too many design variables are simultaneously considered. In this paper, an alternative approach using Equivalent Static Load (ESL) method has been suggested for MDO which is quicker & accurate. The basic idea of the Equivalent Static Load-Method (ESL) is to divide the original nonlinear dynamic optimization problem into an iterative linear optimization and nonlinear analysis process.
Technical Paper

Unloaded Synchronizer Wear in Manual Transmission Gearbox

2020-09-25
2020-28-0334
Synchronizers are the most critical parts of a manual transmission. There are classical calculations available for the synchronizer design and studies are available for the normal functioning of synchronizer rings which describes how the synchronizer behaves in the event of gear shifting. The objective of this study is to describe the synchronizer behavior when synchronizers are not functional, i.e., in other gear engaged condition and the rings are free. This study describes the failure mechanism of the unused synchronizer rings which are moving freely in the packaging space. The findings of this synchronizer design cannot be limited only for synchronizer performance and standard durability calculations. To ensure proper function of synchronizer rings and to achieve the required life the external parameters like clearances, lubrication, clutch design for dampening torsional vibration from the engine are to be considered.
Technical Paper

Effect of Flange Radius and Width on the Fatigue Life of Wheel Hub under Cornering Loads

2020-04-14
2020-01-1232
Automotive manufacturers are concerned about the safety of its customers. Safety critical components like wheel hub are designed considering the severe loads generated from various customer usage patterns. Accelerated tests, which are derived from Real World Usage Patterns (RWUP), are conducted at vehicle level to ensure the wheel hub meet the durability targets. Load and strain measurement are done to understand the critical lateral loading undergone by the wheel hub. Measured data is synthesized to drive the duty cycle. Finite Element (FE) Analysis of Wheel end is performed at module level considering measured loads to capture the exact load path in physical test. Simulation results are compared with the measured strain for validating the FE analysis procedure. FE analysis was repeated for different wheel hub designs, combinations of different flange radius (R) and flange width (t), to understand the effect of the two critical dimensions on wheel hub durability.
Technical Paper

Application of Reliability Technique for Developing a Test Methodology to Validate the Engine Mounted Components for Off-Road Applications under Vibration

2017-09-29
2017-01-7004
Vibrational fatigue is a metal fatigue caused by the forced vibrations which are purely random in nature. The phenomenon is predominantly important for the components/systems which are subjected to extreme vibration during its operation. In a vehicle, an engine is the main source of vibration. The vibrational fatigue, therefore, plays a key role in the deterioration of engine mounted components. Multiple test standards and methodologies are available for validating engine mounted parts of an automobile. These might not be appropriate in the case of an off- road vehicle as the vibrational exposure of engine mounted components of an off-road vehicle is entirely different. In the case of an off-road vehicle, the engine mounted components are subjected to a comparatively higher level of vibration for a longer duration of time as compared to the passenger cars.
Technical Paper

Front Loading of Foot Swing Envelop during Egress to Vehicle Architecture

2017-07-10
2017-28-1960
In automotive industry, design of vehicle to end customer with proper ergonomics and balancing the design is always a challenge, for which an accurate prediction of postures are needed. Several studies have used Digital Human Models (DHM) to examine specific movements related to ingress and egress by translating complex tasks, like vehicle egress through DHMs. This requires an in-depth analysis of users to ensure such models reflect the range of abilities inherent to the population. Designers are increasingly using digital mock-ups of the built environment using DHMs as a means to reduce costs and speed-up the “time-to-market” of products. DHMs can help to improve the ergonomics of a product but must be representative of actual users.
Technical Paper

Novel, Compact and Light Weight Plenum Assembly for Automobiles

2017-07-10
2017-28-1924
Plenum is the part located between the front windshield and the bonnet of an automobile . It is primarily used as an air inlet to the HVAC during fresh air mode operation. It’s secondary functions include water drainage, aesthetic cover to hide the gap between windshield to bonnet, concealing wiper motors and mechanisms etc. The plenum consists mainly two sub parts viz. upper plenum and lower plenum. Conventional plenum design which is found in majority of global OEMs employ a plastic upper plenum and a metal lower plenum which spans across the entire width of engine compartment. This conventional lower plenum is bulky, consumes more packaging space and has more weight. In this paper, we propose a novel design for the plenum lower to overcome above mentioned limitations of the conventional design. This novel design employs a dry and wet box concept for its working and is made up of complete plastic material.
Technical Paper

Multidisciplinary Design Optimization of Automobile Tail Door

2017-03-28
2017-01-0251
Stringent emission norms by government and higher fuel economy targets have urged automotive companies to look beyond conventional methods of optimization to achieve an optimal design with minimum mass, which also meets the desired level of performance targets at the system as well as at vehicle level. In conventional optimization method, experts from each domain work independently to improve the performance based on their domain knowledge which may not lead to optimum design considering the performance parameters of all domain. It is time consuming and tedious process as it is an iterative method. Also, it fails to highlight the conflicting design solutions. With an increase in computational power, automotive companies are now adopting Multi-Disciplinary Optimization (MDO) approach which is capable of handling heterogeneous domains in parallel. It facilitates to understand the limitations of performances of all domains to achieve good balance between them.
Technical Paper

Development of Indian Digital Simulation Model for Vehicle Ergonomic Evaluations

2016-04-05
2016-01-1431
Virtual assessment of an occupant postural ergonomics has become an essential part of vehicle development process. To design vehicle for different market is one of the primary reason for manufacturers using digital tools to address the specific needs of the target market including cultural background, road and traffic conditions. RAMSIS is a widely used software for creating digital human models (DHM) of different target population which allows manufacturers to assess design with unique customer requirements in product design. Defining these requirements with RAMSIS human module helped development team to accurately define occupant targets such as occupant space, visibility and reachability etc. Occupant behavior and usage scenario are factors which are unique to target market and they influence the occupant posture and usage pattern inside the vehicle. This paper defines the methodology towards the development of Indian Digital Simulation model for vehicle ergonomic evaluations.
Technical Paper

Integration and Packaging for Vehicle Electrification

2015-01-14
2015-26-0115
In current scenario importance of fuel efficient vehicles, lesser emissions & energy efficiency are the major considerations for any vehicle manufacturer. To meet these expectations vehicle manufacturer are exploring alternate powertrains to reduce emissions and produce better fuel efficient vehicles. For any vehicle manufacturer component cost, weight and package volume are the major driving factors for success. This is even true for latest upcoming hybrid and electric vehicles as well. To gain advantage and introduce products faster, OEMs are inclined to electrify their existing platforms to compete with other manufacturers. To convert existing vehicles into hybrid vehicles, all the major components like e machine, High voltage battery, power electronics etc. needs to be carefully packaged along with existing components in the same package space.
X