Refine Your Search

Topic

Author

Search Results

Technical Paper

A Study of Compression Pad, Its Selection and Optimization Process for the Lithium-Ion Cell Module

2024-04-09
2024-01-2430
The need for eco-friendly vehicle powertrains has increased drastically in recent years. The most critical component of an electric vehicle is the battery pack/cell. The choice of the appropriate cell directly determines the size, performance, range, life, and cost of the vehicle. Lithium-ion batteries with high energy density and higher cycle life play a crucial role in the progress of the electric vehicle. However, the packaging of lithium-ion cells is expected to meet lots of assembly demands to increase their life and improve their functional safety. Due to their low mechanical stability, the lithium-ion cell modules must have external pressure on the cell surface for improved performance. The cells must be stacked in a compressed condition to exert the desired pressure on the cell surface using compression foam/pads. The compression pads can be either packaged between each cell or once in every set of cells based on the cell assembly requirements.
Technical Paper

Importance of Metallurgical Properties to Prevent Shaft Failures in Off-road Vehicle Validation

2023-05-25
2023-28-1319
Globally, automotive sector is moving towards improving off-road performance, durability and safety. Need of off-road performance leads to unpredictable overload to powertrain system due to unpaved roads and abuse driving conditions. Generally, shafts and gears in the transmission system are designed to meet infinite life. But, under abuse condition, it undergo overloads in both torsional and bending modes and finally, weak part in the entire system tend to fail first. This paper represents the failure analysis of one such an incident happened in output shaft under abuse test condition. Failure mode was confirmed as torsional overload using Stereo microscope and SEM. Application stress and shear strength of the shaft was calculated and found overstressing was the cause of failure. To avoid recurrence of breakage, improvement options were identified and subjected to static torsional test to quantify the improvement level.
Technical Paper

Side Door Hinge Axis Deviation and Skewness Study on the Door Closing Effort

2023-04-11
2023-01-0610
The side door closing effort is one of the main evaluating parameters which demonstrates the build quality of the vehicle. The side door hinge axis inclination is one of the key attributes that affect the side door closing effort. Commonly, the hinge axis is inclined in two directions of a vehicle to have necessary door rise during the door opening event. Due to the process and assembly variations in the door assembly, the upper and lower hinge axis of the side door deviates from the design axis. In this paper, the deviations in the side door hinge axis and its effects on the side door closing velocity is discussed. The deviations of the side door hinge axis are studied with a coordinate measuring machine. The side door closing velocity of the vehicle is measured with the velocity meter. The study revealed that side door closing velocity is increasing with an increase in the deviation of the top and bottom door hinge axis from the design hinge axis.
Technical Paper

Optimum design of a Tractor hydraulics system by innovative material development and Correlation with physical testing

2023-04-11
2023-01-0877
The tractor usage is growing in the world due to derivative of rural economy and farming process. It needed wide range of implements based on the applications of the customer. The tractor plays a major role in Agricultural and Construction applications. In a tractor, hydraulic system is act as a heart of the vehicle which controls the draft and position of the implement. Hydraulic system consists of Powertrain assembly, 3-point linkage and DC sensing assembly. The design of hydraulic powertrain assembly is challenging because the loads acting on the system varies based on the type of implement, type of crop, stage of farming and soil conditions etc., Hydraulic powertrain assembly is designed based on standards like IS 12207-2019 which regulates the test methods for the system based on the lift capacity of the tractor. In this paper, virtual simulation has been established to optimize the design and perform the test correlation.
Technical Paper

Light Weight Composite Structure Approach of Automotive Soft Top Construction

2023-04-11
2023-01-0876
In an off-road vehicle, Vehicle Structure plays a major role in passenger safety, Aesthetics, Durability, through a validated construction of canopy structure. This structure is to maintain the shape of the vehicle and to support various loads acting on the vehicle. In present market a safe, Durable, Robust, Waterproof, Noise less, Light weight and cost-effective off-road vehicle will always be a delight for any customer. However, the current conventional way of Soft top vehicle structure use metal brackets and formed sheet parts to create a structure to retain the canopy shape in place. These conventional structures are often heavier and would have many demerits such as heavy weight, Corrosion, Risk of canopy tear due to metallic structure edges and inappropriate draining, water management. Considering this we replaced the heavy metal brackets in to blow molded plastic parts.
Technical Paper

Light Weight Material for Entry Assist Grab Handle with Gas Assist Technology

2023-04-11
2023-01-0875
Ground clearance plays a vital role in an off-road vehicle during off roading. Higher the ground clearance, higher is the difficulty during ingress & egress of the vehicle. This brings in the necessity to provide entry-assist grab-handles for vehicle with more ground clearance (>200mm). Entry-assist grab handles alleviates the pain of the occupants during ingress and egress. For entry-assist grab handles’ purpose to be served, it should provide comfortable ergonomic grip & have to take the load of passengers while ingress or egress through-out the complete life cycle of the vehicle. Entry Assist grab handles can be fitted on A-Pillar zone to assist first row passengers & on B-pillar zone to assist second row passenger. Providing entry-assist grab handles on pillar trims make the grab-handles exposed to head-impact zone and hence, in most of the cases, it should pass the head impact regulations framed for respective countries.
Technical Paper

Advanced Modelling of Frequency Dependent Damper Using Machine Learning Approach for Accurate Prediction of Ride and Handling Performances

2023-04-11
2023-01-0672
Accurate ride and handling prediction is an important requirement in today's automobile industry. To achieve the same, it is imperative to have a good estimation of damper model. Conventional methods used for modelling complex vehicle components (like bushings and dampers) are often inadequate to represent behaviour over wide frequency ranges and/or different amplitudes. This is difficult in the part of OEMs to model the physics-based model as the damper’s geometry, material and characteristics property is proprietary to part manufacturer. This is also usually difficult to obtain as a typical data acquisition exercise takes lots of time, cost, and effort. This paper aims to address this problem by predicting the damper force accurately at different velocity/ frequency and amplitude of measured data using Artificial Neural Networks (ANN).
Technical Paper

Aerodynamic Performance Assessment on Typical SUV Car Model by On-Road Surface Pressure Mapping Method

2021-10-01
2021-28-0188
Aerodynamics of on-road vehicles has come to the limelight in the recent years. Better aerodynamic design of vehicle would improve vehicle fuel efficiency with increased acceleration performance. To obtain best aerodynamic body, the series of design modifications and different testing methodologies must be involved in vehicle design and validation phase. Wind tunnel aerodynamic force measurement, road load determination and computational fluid dynamics were the common methods used to evaluate the aerodynamic behavior of the vehicle body. As a novel approach, the present work discusses about the on-road (Real time) testing methodology that is aimed to evaluate the aerodynamic performance of vehicle body using surface pressure mapping. A 64-Channel digital pressure scanner has been utilized in this work for mapping the pressure at different locations of the typical vehicle body.
Technical Paper

Design, Development and Experimental Investigation on the Effect of HVAC Power Consumption in Electric Vehicle Integrated with Thin Film Solar PV Panels

2021-10-01
2021-28-0234
Air conditioning systems are one of the significant auxiliary loads on the vehicle powertrain. In an Electric Vehicle (EV) where the available energy is limited, it becomes crucial to optimize the overall energy consumption of the auxiliary loads. The major power consuming components in an automotive HVAC system (Heating, Ventilation and Air Conditioning) are: Compressor, Cabin blower, Condenser cooling fan and the Control devices. Significant progress is already made in enhancing the energy efficiency of the above-mentioned power consuming components part of vehicle HVAC system. Alternate energy sources are being explored recently, to reduce the energy demand from vehicle. One such proposal is to harness the abundant solar energy available, through solar panels and consume this energy to supplement the power required for HVAC system components. Solar panels convert solar energy to electrical energy by the principle of the photovoltaic effect.
Technical Paper

Development of Sensor Based Rotavator Unit For Display of Operational Parameters on Various Soil Conditions

2021-09-22
2021-26-0091
Rotavator is an active tillage implement for breaking the Soil and for the preparation of seed bed for cultivation. The Farmers are currently facing problem due to usage of sub optimal speed of Rotavator which results in more fuel consumption, takes more time for completion of operation. Also, the Current Rental models work on Tractor + Implement as rental combination and customer not able to rent Rotavator as a standalone implement due to non-availability of Tracking information such as hours of utilization on Rotavator. Farmers not able to maintain the service periodicity, if oil change not done in prescribed duration then it may result in improper maintenance and breakdown of the Rotavator. To overcome these problems a smart Rotavator developed consists of an electronic unit fitted on the Rotavator shaft to measure the speed of the shaft rotation and in turn convert to Rotavator speed and also able to convert into Hours of usage based on the starting and stopping of the rotavator.
Technical Paper

A 1:3 Small Scale Vehicle Model Investigation in Small Scale Wind Tunnel and Correlation with Full Vehicle Testing

2021-09-22
2021-26-0493
In present study a comparative investigation and correlation attempted on small scale vehicle model for aerody-namic drag performance at small scale wind tunnel test facility in India vs full vehicle tested at globally know and accepted full scale test facility in Pininfarina, Italy. Current investigation aims to assess the small-scale wind tunnel suitable for testing 1:3 small scale car models A scale model of 1:3 scale size was tested in small scale wind tunnel (at IISC,Bengaluru, India) having test section area of 11.68 Sq. m. To understand the overall vehicle aerodynamic drag performance small scale model was test-ed for different configurations such as baseline, spoiler removal, underbody cover and different yaw condition. To understand the correlation between small scale vs full vehicle’s aerodynamic performance one actual vehicle was also tested at full scale wind tunnel Pinifarina Italy.
Journal Article

Model Based Design, Simulation and Experimental Validation of SCR Efficiency Model

2021-09-22
2021-26-0209
Selective Catalytic Reduction is a key technology, used for NOx abatement. There are several models available for SCR system performance out of which most are experimentally verified only in flow reactors with simulated gaseous concentration and standard test conditions. But in the vehicle as well as in the engine test bench the conditions are very much dynamic compared to the simulated conditions of the lab. This transient behaviour emphasizes the need for a best fit model which accommodates the real-world dynamic conditions, thus reducing the overall effort in SCR catalyst selection for any given engine or vehicle application. The primary objective of this paper is to derive an empirical and mathematical efficiency model for SCR catalyst performance through a model-based design approach. The output from the model is compared with the experimental results from the vehicle and engine test bench, to validate the model accuracy.
Technical Paper

Subjective and Objective Steering Feel Evaluation of Compact SUV Electric Power Steering System Using Hardware in the Loop Simulation

2021-09-22
2021-26-0080
Hardware-in-the-loop (HIL) test benches are indispensable for the development of modern vehicle dynamics controllers (VDCs). They can be regarded as a standard methodology today, because of the extremely safety critical nature of the multi-sensor and multi-actuator systems used in vehicle dynamics control. The required high quality standards can only be ensured by systematic testing within a virtual HIL environment before going into a real car. The steering system is an important aspect of the automobile from operational safety and driver enjoyment perspectives. Current Problem/Opportunity is realistic subjective steering feel prediction before vehicle build. And upfront predict the handling characteristics more accurately with subjective feel before proto build. Current Issue is difficult to convert the objective data into subjective feel and difficult to incorporate the nonlinear steering characteristics with hysterics, friction and power assist curves using virtual simulation.
Technical Paper

Realistic Electric Motor Modelling for Electric Vehicle Performance Prediction

2021-09-22
2021-26-0152
Costlier engine exhaust gas treatment systems as a result of stringent emission norms and increasing awareness about industrial effects on climate have pushed the automotive industry around the globe to shift its focus from fossil fuel driven vehicles to electrically powered ones. While Battery Electric Vehicles (BEVs) have some problematic issues such as lower range, lesser energy density and higher cost owing to not fully mature battery technology, they do provide some benefits such as lower carbon footprint and simpler transmission systems. The torque and power characteristics vary greatly between IC engines and electric motors. The longitudinal dynamics of a vehicle depends greatly on the nature of its powertrain. As a result, new challenges have emerged for simulation engineers who were until very recently accustomed only to IC engine driven vehicles.
Technical Paper

Experimental Investigation on the Effect of HVAC Power Consumption in Electric Vehicle Integrated with Thin Film Solar PV Panels

2021-09-15
2021-28-0122
Air conditioning systems are one of the significant auxiliary loads on the vehicle powertrain. In an Electric Vehicle (EV) where the available energy is limited, it becomes crucial to optimize the overall energy consumption of the auxiliary loads. The major power consuming components in an automotive HVAC system (Heating, Ventilation and Air Conditioning) are: Compressor, Cabin blower, Condenser cooling fan and the Control devices. Significant progress is already made in enhancing the energy efficiency of the above-mentioned power consuming components part of vehicle HVAC system. Alternate energy sources are being explored recently, to reduce the energy demand from vehicle. One such proposal is to harness the abundant solar energy available, through solar panels and consume this energy to supplement the power required for HVAC system components. Solar panels convert solar energy to electrical energy by the principle of the photovoltaic effect.
Technical Paper

Thermal Performance and Ambient Airside Pressure Drop Prediction for Automotive Charge Air Cooler Using 1-D Simulation

2021-09-15
2021-28-0135
The present work discusses the developed simulation model aimed to predict the heat rejection (HR) performance and external pressure drop characteristics of automotive charge air cooler (CAC). Heat rejection and airside pressure drop characteristics of CAC were predicted for the conditions of different charge air mass flow rates and different cooling air velocities. The lack of detailed research on CAC performance prediction has motivated the development of the proposed simulation model. The present 1-D simulation has been developed based on the signal library of AMESIM application tool. Input parameters for this simulation such as core size, tube pitch, tube height, number of tubes, fin density, louver angle, louver pitch, charge air mass flow rate, cooling air velocity, charge air inlet temperature, and ambient temperature. Heat rejection curve and airside pressure drop of CAC were the output of the present simulation.
Technical Paper

Under-Hood CRFM and CAC Air Flow Management of Vehicle to Improve Thermal Performance by 1D Method Using Amesim

2021-09-15
2021-28-0140
Currently the Automotive industry demands highly competitive product to survive in the global tough competition. The engine cooling system plays a vital role in meeting the stringent emission norms and improving the vehicle fuel economy apart from maintaining the operating temperature of engine. The airflow through vehicle subsystems like the grille, bumper, the heat exchangers, the fan and shroud and engine bay are called as front-end flow. Front end flow is crucial factor in engine cooling system as well as in determining the aerodynamic drag of vehicle. The airflow through the engine compartment is determined by the front-end vehicle geometry, the CRFM and CAC package, the engine back restriction and the engine compartment geometry including the inlet and outlet sections. This paper discusses the 1D modelling method for front-end airflow rate prediction and thermal performance by 1D method. The underbody components are stacked using heat stack and simulated in pressure mode.
Technical Paper

Innovative Approach of Reducing Vibration Stress in High Pressure Fuel Injection Pipe and Fuel Injector Using Vibration Dampers in Two Cylinder Diesel Engine

2021-04-06
2021-01-0686
Design and development of high-pressure pipe involves number of design validation plans for robust design in diesel engine. The fundamental behavior of two-cylinder diesel engine with parallel stroke involves high vibration which generates stress on components mounted on crankcase resulting into earlier fatigue failure. In this paper, the innovative approach of using optimized design of vibration damper for resolving high vibration stress concerns in fuel system is discussed. The vibration dampers were designed meeting both performance and durability aspects in two-cylinder diesel engine applicable for both passenger and commercial vehicle. This paper highlights the design approach involving experimental stress measurements and design optimization based on part development feasibility.
Technical Paper

A CFD Simulation Approach for Optimizing Front Air-Dam to Improve Aerodynamic Drag of a Vehicle

2020-09-25
2020-28-0361
The front air-dam diverts the airflow flowing through the underbody, thereby reducing aerodynamic drag. The height, shape and position of air-dam must be optimized to get improved drag. Extensive iterations are carried out to finalize the front air-dam size and position until the target is achieved. Researchers used to study the effect of air-dam height, then with fixed height will work to finalize position. Studies with interactive effect of front air-dam height and position are scanty. The existing process is time consuming as the front air-dam size and position is adjusted manually and simulation is being performed for each design and requires detailed analysis for all design iterations. The objective of this study is to couple CFD solver with design optimization software to reduce overall manual design iterations to choose the effective front air-dam geometry.
Technical Paper

Customized ROPS Application for Configurable Design at Concept Level

2020-09-25
2020-28-0474
Tractor roll over is the most common farm-related cause of fatalities nowadays. ROPS (Roll-Overprotective Structures) are needed to prevent serious injury and death. It creates a protective zone around the operator when a rollover occurs. In India the ROPS is getting mandatory across all HP ranges except narrow track. In the present study states the customized ROPS application for configurable design such as Automated safety zone for all homologation standards, ROPS A0-D excel calculator for selection of material at concept stage and bolt calculator for selection of size. For the above applications below aspects need to consider such as Tractor weight, Rear housing mounting, Operator seat index position (SIP), Seat reference points (SRP) and all ROPS homologation standards. This ROPS application is to reduce the timeline, manual error and ensure the reliability of the modular optimal design for various platforms and variants.
X