Refine Your Search

Topic

Search Results

Technical Paper

A Study of Compression Pad, Its Selection and Optimization Process for the Lithium-Ion Cell Module

2024-04-09
2024-01-2430
The need for eco-friendly vehicle powertrains has increased drastically in recent years. The most critical component of an electric vehicle is the battery pack/cell. The choice of the appropriate cell directly determines the size, performance, range, life, and cost of the vehicle. Lithium-ion batteries with high energy density and higher cycle life play a crucial role in the progress of the electric vehicle. However, the packaging of lithium-ion cells is expected to meet lots of assembly demands to increase their life and improve their functional safety. Due to their low mechanical stability, the lithium-ion cell modules must have external pressure on the cell surface for improved performance. The cells must be stacked in a compressed condition to exert the desired pressure on the cell surface using compression foam/pads. The compression pads can be either packaged between each cell or once in every set of cells based on the cell assembly requirements.
Technical Paper

Numerical Investigation on the Design and Development of Automotive Exhaust Muffler –A Case Study

2023-11-10
2023-28-0085
Attaining better acoustic performance and back-pressure is a continuous research area in the design and development of passenger vehicle exhaust system. Design parameters such as tail pipe, resonator, internal pipes and baffles, muffler dimensions, number of flow reversals, perforated holes size and number etc. govern the muffler design. However, the analysis on the flow directivity from tail pipe is limited. A case study is demonstrated in this work on the development of automotive muffler with due consideration of back pressure and flow directivity from tail pipe. CFD methodology is engaged to evaluate the back pressure of different muffler configurations. The experimental and numerical results of backpressure have been validated. The numerical results are in close agreement with experimental results.
Technical Paper

Optimum design of a Tractor hydraulics system by innovative material development and Correlation with physical testing

2023-04-11
2023-01-0877
The tractor usage is growing in the world due to derivative of rural economy and farming process. It needed wide range of implements based on the applications of the customer. The tractor plays a major role in Agricultural and Construction applications. In a tractor, hydraulic system is act as a heart of the vehicle which controls the draft and position of the implement. Hydraulic system consists of Powertrain assembly, 3-point linkage and DC sensing assembly. The design of hydraulic powertrain assembly is challenging because the loads acting on the system varies based on the type of implement, type of crop, stage of farming and soil conditions etc., Hydraulic powertrain assembly is designed based on standards like IS 12207-2019 which regulates the test methods for the system based on the lift capacity of the tractor. In this paper, virtual simulation has been established to optimize the design and perform the test correlation.
Technical Paper

Assessing the Effect of Torque Converter Losses on the NOx Emission and Engine Stability in TGDI AT Vehicle

2021-10-01
2021-28-0185
The emission norms around the world are continuously changing and getting stringent with every revision. India is on its way to make its emission norms at par with that prevailing in the developed nations. The cold-start condition is an important factor affecting vehicle emissions from gasoline direct injection (GDI) and port fuel injection (PFI) vehicles. In this paper, the effects of change in torque converter losses on emissions are experimentally investigated in a TGDI AT vehicle. The instant engagement of the torque converter puts a sudden load on the engine and thus affects its stability. Thus, to overcome the stability issue, Engine Torque has to be simultaneously increased for smooth engagement. As a result, the likelihood of the slightly leaner air-fuel mixture in the cylinder, which results in higher NOx formation, is much greater in an AT vehicle than that of a similar MT vehicle.
Technical Paper

A Parametric Approach of IP Duct Vane Articulation Study for Enhanced Cabin Cool Down Performance

2021-10-01
2021-28-0200
The cabin cool down performance is influenced by heat load, AC system components and Air handling components. The air handling components are AC duct, vane and vent. Design of AC duct vane plays a crucial role in the airflow directivity in cabin which enhances the cabin cool down performance. Simulations are carried out by rotating the vanes manually and requires post process for every iteration. It leads to more time consuming and more number of simulations to achieve the target value. Research articles focusing on automation and optimization of vane articulation studies are scanty. Thus, the objective of this work is to execute the vane articulation study with less manual intervention. A parametric approach is developed by integrating ANSA and ANSYS FLUENT tools. With Direct Fit Morphing and DoE study approach from ANSA delivers the surface mesh model for the different vane angle configurations.
Technical Paper

Aerodynamic Performance Assessment on Typical SUV Car Model by On-Road Surface Pressure Mapping Method

2021-10-01
2021-28-0188
Aerodynamics of on-road vehicles has come to the limelight in the recent years. Better aerodynamic design of vehicle would improve vehicle fuel efficiency with increased acceleration performance. To obtain best aerodynamic body, the series of design modifications and different testing methodologies must be involved in vehicle design and validation phase. Wind tunnel aerodynamic force measurement, road load determination and computational fluid dynamics were the common methods used to evaluate the aerodynamic behavior of the vehicle body. As a novel approach, the present work discusses about the on-road (Real time) testing methodology that is aimed to evaluate the aerodynamic performance of vehicle body using surface pressure mapping. A 64-Channel digital pressure scanner has been utilized in this work for mapping the pressure at different locations of the typical vehicle body.
Technical Paper

Optimization of Body-in-White Weld Parameters for DP590 and EDD Material Combination

2021-10-01
2021-28-0215
Body in White (BIW) of an automobile serves as the shell, on which all the components that make up a vehicle, are mounted. The BIW is an assembly of press formed sheet metal components. The sheet metal composition of each component varies based on the form and functionality requirement of that component. The resulting assembly has multiple weld joineries with dissimilar compositions. The weld integrity of the joineries is crucial in maintaining the geometrical and structural integrity of the BIW. The primary welding method used in BIW assembly is Resistance Spot Welding (RSW). The quality of the weld is an outcome of a combination of multiple weld parameters. These parameters are majorly estimated based on the joinery thicknesses and material combinations. Multiple welding and testing iterations are done to fine tune the parameters for an optimum weld joinery. This is a very tedious process which increases the process time of a BIW assembly.
Technical Paper

Innovative Approach of Reducing Vibration Stress in High Pressure Fuel Injection Pipe and Fuel Injector Using Vibration Dampers in Two Cylinder Diesel Engine

2021-04-06
2021-01-0686
Design and development of high-pressure pipe involves number of design validation plans for robust design in diesel engine. The fundamental behavior of two-cylinder diesel engine with parallel stroke involves high vibration which generates stress on components mounted on crankcase resulting into earlier fatigue failure. In this paper, the innovative approach of using optimized design of vibration damper for resolving high vibration stress concerns in fuel system is discussed. The vibration dampers were designed meeting both performance and durability aspects in two-cylinder diesel engine applicable for both passenger and commercial vehicle. This paper highlights the design approach involving experimental stress measurements and design optimization based on part development feasibility.
Technical Paper

A CFD Simulation Approach for Optimizing Front Air-Dam to Improve Aerodynamic Drag of a Vehicle

2020-09-25
2020-28-0361
The front air-dam diverts the airflow flowing through the underbody, thereby reducing aerodynamic drag. The height, shape and position of air-dam must be optimized to get improved drag. Extensive iterations are carried out to finalize the front air-dam size and position until the target is achieved. Researchers used to study the effect of air-dam height, then with fixed height will work to finalize position. Studies with interactive effect of front air-dam height and position are scanty. The existing process is time consuming as the front air-dam size and position is adjusted manually and simulation is being performed for each design and requires detailed analysis for all design iterations. The objective of this study is to couple CFD solver with design optimization software to reduce overall manual design iterations to choose the effective front air-dam geometry.
Technical Paper

Customized ROPS Application for Configurable Design at Concept Level

2020-09-25
2020-28-0474
Tractor roll over is the most common farm-related cause of fatalities nowadays. ROPS (Roll-Overprotective Structures) are needed to prevent serious injury and death. It creates a protective zone around the operator when a rollover occurs. In India the ROPS is getting mandatory across all HP ranges except narrow track. In the present study states the customized ROPS application for configurable design such as Automated safety zone for all homologation standards, ROPS A0-D excel calculator for selection of material at concept stage and bolt calculator for selection of size. For the above applications below aspects need to consider such as Tractor weight, Rear housing mounting, Operator seat index position (SIP), Seat reference points (SRP) and all ROPS homologation standards. This ROPS application is to reduce the timeline, manual error and ensure the reliability of the modular optimal design for various platforms and variants.
Technical Paper

Optimization of IP Duct Vane Articulation for Improved Cabin Airflow Directivity

2019-10-11
2019-28-0132
The air velocity achieved at driver and passenger aim point is one of the key parameters to evaluate the automotive air-conditioning system performance. The design of duct, vent and vanes has a major contribution in the cabin air flow directivity. However, visual appearance of vent and vane receives higher priority in design because of market demand than their performance. More iterations are carried out to finalize the HVAC duct assembly until the target velocity is achieved. The objective of this study is to develop an automated process for vane articulation study along with predicting the optimized velocity at driver and passengers. The automated simulation of vane articulation study is carried out using STAR-CCM+ and SHERPA optimization algorithm which is available in HEEDS tool. The minimum and maximum vane angle are defined as parameters and face level velocity is defined as response.
Technical Paper

Emission and Noise Optimization of CRDe Engine with Pilot Injection Strategies

2019-10-11
2019-28-0019
The combustion strategies play a key role in emission improvisation and noise reduction on diesel engines equipped for higher emission norus. This paper clearly discussed on the selection of various operating points for optimization and employing of proper calibration strategies like pilot strategy, Main injection timing, EGR type and rail pressure variation for best emission and noise output. Various optimization techniques have been implemented in our study. Since the pilot injection quantity as well as timing are varied in our paper, careful matrix formulation is required to determine the best optimum point. Around 340 points were obtained on varying pilot quantity and pilot separation sweep chosen at single engine speed and load for both the pilots. Out of the above points, 5 sensitive points were selected ensuring the sensitivity of the emissions and noise.
Technical Paper

Experimental Investigation on the Effect of Tire Pressure on Ride Dynamics of a Passenger Car

2019-04-02
2019-01-0622
Ride is essentially the outcome of coupled dynamics of various involved sub-systems which make it too complex to deal analytically. Tires, amongst these, are known to be highly nonlinear compliant systems. Selection of tires specifications such as rated tyre pressure, etc. are generally decided through subjective assessment. While experts agree that tyre pressure affects the attributes such as ride to a noticeable degree, the quantification of the change often remains missing. In the current work, vibration levels of various sub-systems relevant to ride in an SUV are measured for three different tyre pressures at different speeds over the three randomly generated roads. For the purpose, artificial road profiles of classes A, B and C are synthesized from the spectrum of road classes defined in ISO 8608:2016 and reproduced on a four-poster test rig.
Technical Paper

Reduction of Diesel Engine Combustion Noise through Various Injection Strategies

2019-01-09
2019-26-0211
The contribution of engine borne noise is the major source of vehicle noise in diesel powered vehicles. The engine noise can be minimized by modification of engine components design and also with different acoustic abatement techniques. The research activities were carried out on 4-cylinder CRDe engine for SUV application. All the emission and performance parameters along with combustion noise was captured continuously for all the part load points from 1000 RPM to 2750 RPM with respect to the different road conditions and driving cycle. This paper targets on reducing the combustion noise at the noise prone zones only on the basis of the injection strategies ensuring no ill effect on the emissions and fuel economy. The first step was the reduction of rail pressure which helped noise levels to be reduced by almost 6 dB at noise zones. Main injection timing retardation was tried at all possible zones which influenced in considerable noise reduction at various zones.
Technical Paper

Optimized In Cylinder NOx Reduction Strategy for Meeting BSVI Emission Limits

2019-01-09
2019-26-0142
The tough emission limits of BSVI norms with very low levels of NOx and PM emissions presents major techno economic challenges for the automobile industry. Combined efforts of pollutants reduction by combustion modification as well as the exhaust after treatment devices could only facilitate to achieve the desired emission targets. selective catalytic reduction technology is a mandatory system which uses ammonia from the aqueous urea solution to react with NOx forming nontoxic by products. The cost spent on aqueous urea solution in addition to the cost of BSVI diesel encounters high operating cost for the vehicle. NOx reduction by SCR too requires adequate quantity of ammonia from the AdBlue. Hence sensible utilization of DEF is essential for reduced running cost of the SCR system. SCR efficiency is higher for higher exhaust temperature and it requires minimum exhaust temperature above which only it operates.
Technical Paper

Methodology to Determine Optimum Suspension Hard Points at an Early Design Stage for Achieving Steering Returnability in Any Vehicle

2019-01-09
2019-26-0074
Steering returnability while driving is one of the most important parameter which affects the drive pleasure and handling of a vehicle. Steering returnability refers to the automatic returning response of the steering wheel after taking a full turn while vehicle is being steered during driving. Evaluating steering response characteristics of any vehicle in a virtual environment at early stage of a product development saves significant development time and cost. Through this paper an attempt has been made to develop a methodology for selection of suspension hard points which influences steering returnability characteristics of a vehicle at an early product design stage. Conventionally, suspension kinematic parameters such as Caster angle, Steering axis inclination (SAI), etc. are iterated during vehicle design stage to achieve desired Steering returnability.
Technical Paper

BIW Resistance Spot Weld Parameter Standardization through Parameter Optimization across Various Sheet Metal Panel Combinations

2018-07-09
2018-28-0034
Body in White (BIW) is one of the critical aggregates of an automobile. Establishing the quality parameters during body manufacturing is essential to achieve robust BIW structure. Spot weld integrity and dimensional accuracy are the two major quality parameters of a BIW. Weld integrity plays an important role in achieving dimensional accuracy and structural stability. Various combinations of sheet metals are joined together to form a BIW structure. Spot weld parameter selection is one of the critical activity and needs to be programmed for the various combinations of sheet metals. Weld parameter for the various combinations are calculated with the resistance of the joining sheet metals thicknesses. The calculated parameters are validated with the coupon test (or) peel test and it requires several iterations to establish weld integrity of the different combinations and the selected parameters get registered in the weld controller.
Technical Paper

Development of 2.2 L CRDe Engine Meeting BS4 Emission Norms without the Aid of EGR Cooling

2018-07-09
2018-28-0069
The never-ending concern on the air quality and atmospheric pollution has paved way for more stringent emission legislations. Existing Diesel engine hardware face several problems on meeting the tough emission limits and they require more additional features to comply with the emission standards. The current research work throws light on the air path control approach to meet the Bharat stage 4 emission norms on 2.2 L Sports Utility Vehicle engine operating with EGR cooler and the techniques followed to meet the same emission norms without the application of EGR cooler which was successfully implemented on the vehicles enabling reduction of hardware. Also the migration of 2.2 L engine from 88 kW operating on Compression ratio 18.5 to 103 kW at a lower Compression ratio of 16.5 is a challenging process to achieve Nitrogen oxide emissions reduction at part loads.
Technical Paper

Multi-Objective Optimization to Improve SUV Ride Performances Using MSC.ADAMS and Mode Frontier

2018-04-03
2018-01-0575
Ride is an important attribute which must be accounted in the passenger segment vehicles. Excessive H point acceleration, Steering wheel acceleration, Pitch acceleration can reduce the comfort of the driver and the passengers during high frequency and low frequency rough road events. Excessive Understeer gradient, roll gradient, roll acceleration and Sprung mass lift could affect the Vehicle driver interaction during Steady state cornering, Braking and Step steer events. The concept architecture of the vehicle plays an important role in how comfort the vehicle will be. This paper discusses how to improve SUV ride performances by keeping handling performance attributes same or better than base vehicle. Multi Objective Optimization was carried out by keeping spring, bushing and damper characteristic as the design variables to avoid new system or component development time and cost.
Technical Paper

Benefits of Variable Discharge Oil Pump on Performance of 3 Cylinder SI Engine

2017-01-10
2017-26-0051
Lubrication system is a critical factor for engine health. But it creates parasitic load and increased fuel consumption of the engine. The oil demand of an engine depends on engine speed, load, bearing clearances, operating temperature and engine's state of wear. Ideally, the oil pump should adapt the delivery volume flow to actual engine oil demand and should avoid unnecessary pumping of oil which causes increased power and fuel consumption. However in a conventional mechanical oil pump, there is no control on the oil flow and it is purely a function of operating speed. A variable discharge oil pump (VDOP) is an approach to reduce the parasitic losses wherein the oil flow is regulated based on the mechanical needs of the engine. This study is based on the results of a two stage VDOP installed on a 1.2 litre, 3 cylinder MPFI engine. The oil supply is regulated by a solenoid control which receives command from Engine Control Unit (ECU). The study was done in two stages.
X