Refine Your Search

Topic

Author

Search Results

Technical Paper

Impact of Soft Magnetic Ageing on the Performance of Aerospace Propulsion Machines

2022-03-08
2022-01-0050
Electric machines in aerospace applications are subjected to extremely high operating temperatures. This increases coercivity or decreases saturation flux density of the electrical steel resulting in increased core loss. The need for high power density and increased operating speed favours the use of thin gauge Silicon Steel (Si-Fe) and Cobalt Iron (Co-Fe) laminations for aerospace applications. Therefore, the variation in iron loss is studied for three grades of Si-Fe laminations by subjecting them to controlled ageing in laboratory. The analysis is also provided over a range of flux density and frequency to generalize the phenomenon over the operating domain. The results of ageing the laminations are in turn used to predict the degradation in performance of a 1.15 MW, 16-pole 48-slot propulsion machine for aerospace application. The degradation is estimated in terms of variation in iron loss.
Technical Paper

Measurement of Sub-23 nm Particulate Emissions from GDI Engines: A Comparison of Processing Methods

2021-04-06
2021-01-0626
Engine research has increasingly focused on emission of sub 23 nm particulates in recent years. Likewise, current legislative efforts are being made for particulate number (PN) emission limits to include this previously omitted size range. In Europe, PN measurement equipment and procedures for regulatory purposes are defined by the particle measurement programme (PMP). Latest regulation drafts for sub 23 nm measurements specify counting efficiencies with a 65% cut-off size at 10 nm (d65) and a minimum of 90% above 15 nm (d90). Even though alternative instruments, such as differential mobility spectrometers (DMS), are widely used in laboratory environments, the interpretation of their sub 23 nm measurements has not yet been widely discussed. For this study, particulate emissions of a 1.0L gasoline direct injection (GDI) engine have been measured with a DMS system for low to medium speeds with two load steps.
Technical Paper

High Frequency Vibration Transmission Analysis on Agricultural Tractor by Using Combined Dynamical Energy Analysis and Transfer Path Analysis Approach

2020-01-24
2019-32-0527
Dynamical Energy Analysis (DEA) has recently been introduced as a mesh-based high frequency method modelling structure borne sound for complex built-up structures. Using DEA, the structure-borne sound of an assembled agricultural tractor was calculated and good agreement between measurement and DEA calculations has been shown. However, it is still difficult to model a solid structure as currently DEA is based on wave-transmission calculations through plates and plate-to-plate junctions. Additionally, it is often difficult to generate accurate FE meshes of assembled complex structures because of welds, bolts, and rubber brushes between components. In this paper, we propose a novel method to generate DEA elements based on measurement data in order to model solid parts of a complex structures. The method of Advanced Transfer Path Analysis (ATPA) is employed to extract energy-transmission characteristics of a structure.
Technical Paper

Low Cost Reconfigurable Jig Tooling and In-Process Metrology for High Accuracy Prototype Rotorcraft Wing Assembly

2019-09-16
2019-01-1877
Reconfigurable tooling frames consisting of steel box sections and bolted friction clamps offer an opportunity to replace traditional expensive welded steel tooling. This well publicized reconfigurable reusable jig tooling has been investigated for use in the assembly of a prototype compound helicopter wing. Due to the aircraft configuration, the wing design is pinned at both ends and therefore requires a higher degree of end to end accuracy, over the 4m length, than conventional wings. During the investigation some fundamental issues are approached, including: Potential cost savings and variables which effect the business case. Achievable Jig accuracy. Potential sources of instability that may affect accuracy over time. Repeatability of measurements with various features and methods. Typical jig stability over 24hrs including effects of small temperature fluctuations. Deflections that occur due to loading.
Technical Paper

Advanced Assembly Solutions for the Airbus RACER Joined-Wing Configuration

2019-09-16
2019-01-1884
The Rapid And Cost Effective Rotorcraft (RACER) is being developed by Airbus Helicopters (AH) to demonstrate a new Vertical Take-Off and Landing configuration to fill the mobility gap between conventional helicopters and aeroplanes. RACER is a compound rotorcraft featuring wings and multiple rotors. The wing arrangement suggested by AH is defined as a staggered bi-plane joined configuration with an upper and a lower straight wing, either side of the fuselage, connected at their outboard extent to form a triangular structure. The ASTRAL consortium, consisting of the University of Nottingham and GE Aviation Systems, are responsible for the design, manufacture, assembly and testing of the wings. Producing an optimised strategy to assemble a joined-wing configuration for a passenger carrying rotorcraft is challenging and novel. The objective of this work concerns all aspects of assembling the joined-wing structure.
Technical Paper

Restricted Access ‘C’ Clamping Smart Drilling Unit

2019-03-19
2019-01-1334
One way assembly of aero structures has the potential to significantly reduce build times. One of the solutions, which goes towards achieving this philosophy, is the use of a ‘C’ clamping automated drilling system. The Manufacturing Technology Centre has developed and manufactured a ‘C’ clamping automated drilling unit to overcome many of the limitations of current designs, which prevent their use on a broader range of structures. The drilling unit addresses issues with access, size and weight restrictions as well as economic factors. This technical paper will present the outcomes from the design and manufacture of the drilling unit that is to be used within restricted access areas, as either a hand held device or as a robotic end effector free from any cables or hoses, allowing full and unhindered articulation of any robot motion. The device’s services: power, tool lubrication, swarf extraction and control systems have been designed to be embedded, rendering it a standalone unit.
Technical Paper

Demonstration of Transformable Manufacturing Systems through the Evolvable Assembly Systems Project

2019-03-19
2019-01-1363
Evolvable Assembly Systems is a five year UK research council funded project into flexible and reconfigurable manufacturing systems. The principal goal of the research programme has been to define and validate the vision and support architecture, theoretical models, methods and algorithms for Evolvable Assembly Systems as a new platform for open, adaptable, context-aware and cost effective production. The project is now coming to a close; the concepts developed during the project have been implemented on a variety of demonstrators across a number of manufacturing domains including automotive and aerospace assembly. This paper will show the progression of demonstrators and applications as they increase in complexity, specifically focussing on the Future Automated Aerospace Assembly Phase 1 technology demonstrator (FA3D).
Technical Paper

Leading Edge Assembly Real Time Process Monitoring Using Industrial Internet of Things (IIoT)

2019-03-19
2019-01-1367
The increasing global demand for commercial aircraft creates many new challenges in manufacturing including an increased need to maximize the automation of manufacturing processes. The purpose of this research is to develop the understanding of leading edge assembly processes using robot mounted tooling and an automated fixture with advanced process monitoring. Within this research real-time process monitoring data is acquired from an assembly operation and processed into an open cloud environment enabling advanced data analytics. Implementation of advanced analytics utilising process data could be developed for the use of machine learning algorithms which can lead to superior fault finding. The aim of this research is to improve product quality, reduce cost and increase process knowledge, enabling the potential for maximized online and offline process feedback.
Technical Paper

Potential Improvements in Turbofan’s Performance by Electric Power Transfer

2018-10-30
2018-01-1962
Bleeding in engines is essential to mitigate the unmatched air massflow between low and High Pressure (HP) compressors at low speed settings, thus avoiding unstable operation due to surge and phenomena. However, by emerging the More Electric Aircraft (MEA) the engine is equipped with electrical machines on both high and Low Pressure (LP) spools which enables transfer of power electrically from one spool to another and hence provides the opportunity to operate engine core components closer to their optimum design point at off-design conditions. At lower power setting of the engine, HPC speed can be increased by taking power from LP shaft and feeding it to HP shaft which can lead to the removal of the bleeding system which in turn reduces weight and fuel consumption and help to overcome engine instability issues. Fuel consumption can be decreased by decreasing inconsistent thrust with the aircraft mission for flight and ground idle settings.
Technical Paper

High Accuracy Automated Drilling Processes for Achieving Laminar Flow

2016-09-27
2016-01-2095
Reduction of overall drag to improve aircraft performance has always been one of the goals for aircraft manufacturers. One of the key contributors to decreasing drag is achieving laminar flow on a large proportion of the wing. Laminar flow requires parts to be manufactured and assembled within tighter tolerance bands than current build processes. Drilling of aircraft wings to the tolerances demanded by laminar flow requires machines with the stiffness and accuracy of a CNC machine while having the flexibility and envelope of an articulated arm. This paper describes the development and evaluation of high accuracy automated processes to enable the assembly of a one-off innovative laminar flow wing concept. This project is a continuation of a previously published SAE paper related to the development of advanced thermally stable and lightweight assembly fixture required to maintain laminar flow tolerances.
Technical Paper

Design of a Reconfigurable Assembly Cell for Multiple Aerostructures

2016-09-27
2016-01-2105
This paper presents novel development of a reconfigurable assembly cell which assembles multiple aerostructure products. Most aerostructure assembly systems are designed to produce one variant only. For multiple variants, each assembly typically has a dedicated assembly cell, despite most assemblies requiring a process of drilling and fastening to similar tolerances. Assembly systems that produce more than one variant do exist but have long changeover or involve extensive retrofitting. Quick assembly of multiple products using one assembly system offers significant cost savings from reductions in capital expenditure and lead time. Recent trends advocate Reconfigurable Assembly Systems (RAS) as a solution; designed to have exactly the functionality necessary to produce a group of similar components. A state-of-the-art review finds significant benefits in deploying RAS for a group of aerostructures variants.
Technical Paper

Variation Aware Assembly Systems for Aircraft Wings

2016-09-27
2016-01-2106
Aircraft manufacturers desire to increase production to keep up with anticipated demand. To achieve this, the aerospace industry requires a significant increase in the manufacturing and assembly performance to reach required output levels. This work therefore introduces the Variation Aware Assembly (VAA) concept and identifies its suitability for implementation into aircraft wing assembly processes. The VAA system concept focuses on achieving assemblies towards the nominal dimensions, as opposed to traditional tooling methods that aim to achieve assemblies anywhere within the tolerance band. It enables control of the variation found in Key Characteristics (KC) that will allow for an increase in the assembly quality and product performance. The concept consists of utilizing metrology data from sources both before and during the assembly process, to precisely position parts using motion controllers.
Technical Paper

Automated Flexible Tooling for Wing Box Assembly: Hexapod Development Study

2016-09-27
2016-01-2110
The ability to adapt to rapidly evolving market demands continues to be the one of the key challenges in the automation of assembly processes in the aerospace industry. To meet this challenge, industry and academia have made efforts to automate flexible fixturing. LOCOMACHS (Low Cost Manufacturing and Assembly of Composite and Hybrid Structures) - a European Union funded project with 31 partners - aims to address various aspects of aero-structure assembly with a special attention directed to the development of a new build philosophy along with relevant enabling technologies. This paper aims to present the results on the developed wing box build philosophy and the integration of automated flexible tooling solutions into the assembly process. The developed solution constitutes the use of synchronized hexapods for the assembly of front spar to upper cover whereas another hexapod was developed to install a rib by using of a force feedback sensor.
Technical Paper

An Integrated System’s Approach Towards Aero Engine Subsystems Design

2016-09-20
2016-01-2020
This paper proposes an integrated system’s approach towards design of aero-engine subsystems - seals, bearing chamber, generator and power system. In a conventional design approach, the design of the overall system is typically broken-down into subsystems. Therefore, the focus is not on the mutual interaction between different components or subsystems, resulting in a lack of characterization of the overall system performance at the design phase. A systems design approach adopts a much broader outlook, focusing on the overall optimization of the system performance. This paper is divided into two parts. The first part presents an integrated approach for modelling the electrical, mechanical and hydraulic subsystems of aero engines, in order to analyze the fluid dynamics interactions and reduce the transversal shaft vibrations. For this, an in-line starter/generator and an air-riding seal are studied.
Technical Paper

A Modified Oil Lubrication System with Flow Control to Reduce Crankshaft Bearing Friction in a Litre 4 Cylinder Diesel Engine

2016-04-05
2016-01-1045
The oil distribution system of an automotive light duty engine typically has an oil pump mechanically driven through the front-endancillaries-drive or directly off the crankshaft. Delivery pressure is regulated by a relief valve to provide an oil gallery pressure of typically 3 to 4 bar absolute at fully-warm engine running conditions. Electrification of the oil pump drive is one way to decouple pump delivery from engine speed, but this does not alter the flow distribution between parts of the engine requiring lubrication. Here, the behaviour and benefits of a system with an electrically driven, fixed displacement pump and a distributor providing control over flow to crankshaft main bearings and big end bearings is examined. The aim has been to demonstrate that by controlling flow to these bearings, without changing flow to other parts of the engine, significant reductions in engine friction can be achieved.
Journal Article

Reconfigurable Assembly System Design Methodology: A Wing Assembly Case Study

2015-09-15
2015-01-2594
Current assembly systems that deal with large, complex structures present a number of challenges with regard to improving operational performance. Specifically, aerospace assembly systems comprise a vast array of interrelated elements interacting in a myriad of ways, resulting in a deeply complex process that requires a multi-disciplined team of engineers. The current approach to ramp-up production rate involves building additional main assembly fixtures which require large investment and lead times up to 24 months. Within Airbus Operations Ltd there is a requirement to improve the capacity and flexibility of assembly systems, thereby reducing non-recurring costs and time-to-market. Recent trends to improve manufacturing agility advocate Reconfigurable Assembly Systems (RAS) as a viable solution. Yet, adding reconfigurability to assembly systems further increases both the operational and design complexity.
Journal Article

Structural Quality Inspection Based on a RGB-D Sensor: Supporting Manual-to-Automated Assembly Operations

2015-09-15
2015-01-2499
The assembly and manufacture of aerospace structures, in particular legacy products, relies in many cases on the skill, or rather the craftsmanship, of a human operator. Compounded by low volume rates, the implementation of a fully automated production facility may not be cost effective. A more efficient solution may be a mixture of both manual and automated operations but herein lies an issue of human error when stepping through the build from a manual operation to an automated one. Hence the requirement for an advanced automated assembly system to contain functionality for inline structural quality checking. Machine vision, used most extensively in manufacturing, is an obvious choice, but existing solutions tend to be application specific with a closed software development architecture.
Technical Paper

Towards Self-Adaptive Fixturing Systems for Aircraft Wing Assembly

2015-09-15
2015-01-2493
The aim of this work was to develop a new assembly process in conjunction with an adaptive fixturing system to improve the assembly process capability of specific aircraft wing assembly processes. The inherently complex aerospace industry requires a step change in its capability to achieve the production ramp up required to meet the global demand. This paper evaluates the capability of adaptive fixtures to identify their suitability for implementation into aircraft wing manufacturing and assembly. To understand the potential benefits of these fixtures, an examination of the current academic practices and an evaluation of the existing industrial solutions is highlighted. The proposed adaptive assembly process was developed to account for the manufacturing induced dimensional variation that causes significant issues in aircraft wing assembly. To test the effectiveness of the adaptive assembly process, an aircraft wing assembly operation was replicated on a demonstrator test rig.
Technical Paper

Comparative Study of Power Sharing Strategies for the DC Electrical Power System in the MEA

2015-09-15
2015-01-2410
In this paper, the load sharing principles in dc-distribution electric power systems (EPS) for future more-electric aircraft (MEA) are investigated. The study is conducted using a potential MEA EPS architecture with multiple sources feeding into the main dc bus. Corresponding reduced-order EPS models are established. The influence of the cable impedance on the load sharing accuracy is analyzed and sharing error is quantized in mathematical equations. In addition, source/load impedance of the droop-controlled system has been derived leading to the discussion of the stability issues in multi-feed dc EPS under different droop control strategies. The influence of load sharing ratio on the EPS stability margins has been investigated. The theoretical findings were supported by time-domain simulations in Matlab/SimPower.
Technical Paper

Light Weight Aerospace Assembly Fixture

2015-09-15
2015-01-2496
There is the need to strive towards more advanced aircraft with the use of materials such as composites, and a desire to improve efficiency by achieving and maintaining laminar flow over a large proportion of the aircraft wing. Due to the high tolerances required to achieve laminar flow, the manufacturing processes and tooling will have to be revaluated to enable successful manufacture in a production environment. A major influence in achieving the key characteristics and tolerances is the assembly fixture. This paper details the design and manufacture of a carbon fibre based assembly fixture, required for a one-off build of an innovative leading edge wing concept. The fixture has been designed and optimised in order to make it adaptable, reconfigurable, and suitable for lifting as well as being thermally stable whilst maintaining laminar flow tolerances.
X