Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Technical Paper

Design Optimization of Engine Mount Bracket to Reduce Various Gear Noises in the Passenger Car Cabin

2024-01-16
2024-26-0208
With the advancement of regulatory norms in automobile industry, there is a challenge to meet performance efficiency targets, especially with a lightweight platform, while providing superior driving experience to customers. The shift towards weight optimization, makes the vehicle structure more susceptible to transfer a diverse range of noise and vibrations through body. Although most undesirable noises perceived inside the cabin can be reduced by superior technology engine mounts and NVH packaging, all such solutions lead to cost addition. Intelligent considerations in part design can be used to supplement predictable transfer paths to quell the unwanted vibrations. One such case is of the gear whine noise in certain rpm bands caused by inherent gear meshing frequency coinciding with natural frequency of an engine mounting bracket.
Technical Paper

Effect of Environmental Factors on the Function of an Automotive Luggage Cover of a Passenger Vehicle – A Case Study

2024-01-16
2024-26-0228
The Indian passenger vehicle market has grown by more than 40% by volume in the last decade and has reached a record high in FY23. This has created a more diverse and demanding customer base that values interior design and quality. The modern customer expects a high level of aesthetics and sophistication in their vehicle interiors - including in the luggage area. The Luggage Cover (Parcel Tray) is a component in the luggage area of a passenger vehicle that is used to conceal the luggage & improve its aesthetics. The cover is generally made of thermoplastic material with rotating hinges and is held in its place by the compression from the back door, which is frequently opened and closed. The parts that connect the cover to the door (usually an elastomer interface on the thermoplastic tray) tend to change over a period due to climatic conditions and leads to rattling concerns over a period.
Technical Paper

Resonator Design Study to Reduce Pressure Pulsation from CNG Injector

2024-01-16
2024-26-0233
With the advent of upcoming stringent automobile emission norms globally, it is inevitable for original equipment manufacturers (OEMs) to shift towards greener alternatives. Use of compressed natural gas (CNG) is a preferred solution as it is a relatively clean burning fuel and it doesn’t have significant loss in vehicle efficiency and performance. Modern day customers are more aware and sensitive towards vehicle noise, vibration and harshness (NVH). Hence, OEMs must cater to this demand through optimized design and layout. In a passenger vehicle, CNG is stored at high pressure and delivered to injectors after pressure reduction at a regulator. During engine idling, the opening and closing motion of the CNG injector generates back pulsation and these pulsations cause vibrations which may propagate through other components in the delivery path and perceived as noise inside vehicle cabin.
Technical Paper

A New Analytical Model for Clutch System Modeling and Design Optimization

2019-04-02
2019-01-0840
In manual transmission vehicles, Clutch has direct interaction with the driver and plays a significant role in defining the drivability and NVH of a vehicle. These key performance factors depend on the interaction of diaphragm and cushion springs of a clutch. For an automobile manufacturer, it’s essential to optimize the characteristics of these springs based vehicle performance requirements. A state of the art analytical model has been developed by modeling the diaphragm and cushion spring with exponential equations. Based on these models, response functions for release load, torque build-up, and pressure plate lift have been derived. Results achieved from these response functions are correlated with test data. Key contributing factors for peak clutch pedal load, vehicle launch acceleration, and disengagement point have been identified by sensitivity analysis. Multi-objective optimization is performed to select optimized parameters for vehicle performance improvement
Technical Paper

Effect of PVC Skin and Its Properties on Automotive Door Trim Inserts

2017-03-28
2017-01-0492
Plastic plays a major role in automotive interiors. Till now most of the Indian automobile industries are using plastics mainly to cover the bare sheet metal panels and to reduce the weight of the vehicle along with safety concerns. Eventually Indian customer requirement is changing towards luxury vehicles. Premium look and luxury feel of the vehicle plays an equal role along with fuel economy and cost. Interior cabin is the place where aesthetics and comfort is the key to attract customers. Door Trims are one of the major areas of interiors where one can be able to provide premium feeling to the customer by giving PVC skin and decorative inserts. This paper deals with different types of PVC skins and its properties based on process constraints, complexity of the inserts. Door trim inserts can be manufactured by various methods like adhesive pasting, thermo-compression molding and low pressure injection molding process etc.
Technical Paper

Dynamic Simulation of Clutch Actuation System with Flexible Cable

2015-01-14
2015-26-0180
Clutch actuation system in manual transmission is one of the key systems of power-train with which driver interacts frequently. Therefore its load and travel feeling are important to customer. Clutch actuation system consists of clutch pedal assembly, flexible cable mounted on body panel, and clutch release arm/ shaft assembly inside transmission unit assembly. Clutch pedal load, travel and engagement point are important parameters to specify the actuation feeling while designing the clutch actuation system. Validation of actual values is being done at proto vehicle testing stage, as final output calculation may not be accurate due to dependency on variables difficult to estimate. To overcome these difficulties a virtual dynamic model of the entire clutch actuation mechanism has been created in MBD software. Model input factors are based on actual testing results to improve the accuracy. The model predicts the clutch pedal load and travel values for a given set of vehicle inputs.
Technical Paper

A CAE Approach towards Development of an Optimized Design of Bumper

2015-01-14
2015-26-0238
During the conceptualization of vehicle, it is big challenge for automotive manufacturer to design a vehicle which has an excellent aesthetic looks as well as meet the stringent vehicle regulations. In the vehicle styling, bumper plays an important role in deciding of the contemporary looks of the vehicle. To improve customer satisfaction, it is important to design a bumper which provides feeling and sense of durability. In addition, bumper should sustain low-speed impact and protects the peripheral components such as parking lights, headlamps, hood, back door and safety related installed equipments like Rear parking camera, parking sensors, etc. Bumper should be dent resistant and be able to regain its original shape on removal of the applied load. An elegant design of bumper should be light weight with high strength. This paper explains about a new CAE methodology developed to simulate the real life loading condition of bumper and to calculate the deformation in the bumper.
Technical Paper

Vehicular Cabin Noise Source Identification and Optimization Using Beamforming and Acoustical Holography

2014-04-01
2014-01-0004
The automobile market is witnessing a different trend altogether - the trend of shifting preference from powerful to fuel efficient machines. Certain factors like growing prices of fuel, struggling global economy, environmental sensitiveness and affordability have pushed the focus on smaller, efficient and cleaner automobiles. To meet such requirements, the automobile manufacturers, are going stringent on vehicle weights. Using electric and hybrid power-plants are other options to meet higher fuel efficiency and emission requirements but significant cost of these technologies have kept their growth restricted to only few makers and to only few regions of the globe. Optimizing the vehicle weight is a more attractive option for makers as it promises lesser time to market, is low on investment and allows use of existing platforms.
Technical Paper

Application and Development Challenges of Dynamic Damper in Cabin Booming Noise Elimination

2014-04-01
2014-01-0013
Automotive OEMs quest for vehicle body light weighting, increase in Fuel efficiency along with significant cut in the emissions pose significant challenges. Apart from the effect on vehicle handling, the reduction of vehicle weight also results in additional general requirements for acoustic measures as it is an important aspect that contributes to the comfort and the sound quality image of the vehicle, thus posing a unique challenge to body designers and NVH experts. Due to these conflicting objectives, accurate identification along with knowledge of the transfer paths of vibrations and noise in the vehicle is needed to facilitate measures for booming noise dampening and vehicle structure vibration amplitude. This paper focuses on the application of a unique design and development of vehicle body structure anti-vibration dynamic damper (DD), unique in its aspect in controlling booming noise generated at a specific RPM range.
Technical Paper

Design Optimization of FEAD System to Meet Durability Target in a New Vehicle Development Program

2014-04-01
2014-01-1636
Front end accessory drive (FEAD) system explained in this paper is a sub-system of an engine. In FEAD system, a poly-v belt is used to drive the alternator and water pump by transmitting power from crankshaft pulley. In a new vehicle development program, durability targets of FEAD system are based on required life of poly-v belt, its static tension readjustment interval and replacement frequency. To meet these durability targets following methodology is applied in design stage:- 1 Simulation of FEAD system to calculate the theoretical life of belt 2 Part level testing of belt as per SAE J2432 These methods give sufficient information on belt durability. However in actual usage, certain failures are prone to happen and enormous difference is always observed between theoretical and actual life of belt. This paper describes the traditional stair-case approach followed to optimize the FEAD system based on the outcome of durability tests.
Technical Paper

Improving Side Crash Performance of a Compact Car via CAE

2014-04-01
2014-01-0546
The side impact accident is one of the very severe crash modes for the struck side occupants. According to NHTSA fatality reports, side impact accounts for over 25% of the fatalities in the US. Similar fatality estimates have been reported in the EU region. Side crash compliance of a compact car is more severe because of the less space available between the occupant and the vehicle structure, stringent fuel economy, weight and cost targets. The current work focuses on the development of Side body structure of a compact car through Computer Aided Tools (CAE), for meeting the Side crash requirements as per ECE R95 Regulation. A modified design philosophy has been adopted for controlling the intrusion of upper and lower portion of B-pillar in order to mitigate the injury to Euro SIDII dummy. At first, initial CAE evaluation of baseline vehicle was conducted.
Technical Paper

Improving Offset Crash Performance and Injury Mitigation via Multi-Body Simulation and Structural CAE

2014-04-01
2014-01-0939
Recent advancement in numerical solutions and advanced computational power has given a new dimension to the design and development of new products. The current paper focuses on the details of work done in order to improve the vehicle performance in Offset deformable Barrier (ODB) crash as per ECER-94. A Hybrid approach involving the Structural Crash CAE as well as Multi-body Simulation in MADYMO has been adopted. In first phase of the development, CAE results of Structural deformation as well as Occupant injury of the baseline model were correlated with physical test data. The second phase includes the improvement in intrusion and crash energy absorption by structural countermeasures in the vehicle body. In third phase parametric study has been carried out via Madymo simulation in order to decide on the factors which can be controlled in order to mitigate the Occupant injury. Recommendations of Madymo simulation have been confirmed by conducting Physical sled tests.
Technical Paper

Passenger Car Front End Optimization Using CFD Simulation

2014-04-01
2014-01-0627
Increased engine thermal load, front end styling and compact vehicle requirements have led to significant challenges for vehicle front end designer to provide innovative thermal management solutions. The front end cooling module design which consists of condenser, radiator, fan and intercooler is an important part of design as it ensures adequate heat removal capacity of radiator over a wide range of operating conditions to prevent overheating of engine. The present study describes the optimization of cooling air flow opening in the front end using CFD methodology of a typical passenger car. The predicted vehicle system resistance curve and coolant inlet temperature to the radiator are used for the selection of cooling modules and to further optimize the front end cooling opening area. This leds to the successful optimization of the front end, selection of cooling modules with significant cost savings by reducing prototype testing and design cycle time.
Technical Paper

Enhanced Light Weight Frontal Crash Box Design for Low Speed and Insurance Tests

2013-01-09
2013-26-0023
Single body architecture designed for various global markets and subjected to varied load cases is a challenge for Body in White (BIW) engineers. Optimization of structural design to meet regulatory, insurance and assessment requirements is an iterative and time consuming task. With focus on reduction of vehicle's damageability and ease of repairability Original Equipment Manufactures (OEM), insurance companies and Research Council for Automobile Repairs (RCAR) [1] are striving for better designs. A space constraint crash box structure installed behind the bumper plays a significant role in absorption of energy, before transmitting to longitudinal rails. In this study, crashworthiness of a multipurpose crash box for a hatch segment vehicle is presented with the various design of experiments conducted with a focus on light weighting, cost and ease of manufacturing.
Technical Paper

Passenger Car Front Air - Dam Design Based on Aerodynamic and Fuel Economy Simulations

2013-01-09
2013-26-0063
Computational Fluid Dynamics (CFD) is used extensively in the optimization of modern passenger car to meet the ever growing need of higher fuel economy, better engine and underbody cooling. One of the way to achieve better fuel economy is to reduce the vehicle overall resistance to flow, know as drag. Vehicle drag is a complex phenomenon governed by vehicle styling, component shape, layout and driving velocity and road conditions. To reduce the drag a lot of aero-parts are used these days such as air-dam, skirts, spoiler, undercover, dams etc. However the design of these aero-parts must be optimized to get the desired result as their addition alone does not guarantee improvement in performance. This paper aims at studying the effect of air-dam height and position on vehicle aerodynamics. Also the effect of air-dam addition was verified using fuel economy simulations.
Technical Paper

An Alternate Methodology to Measure the A-Pillar Obstruction in Passenger Cars

2013-01-09
2013-26-0030
With ever increasing demand for vehicle safety and fuel efficiency, Body in White (BIW) designers are striving for vehicle's body mass optimization leading to the development of lean designs. Nevertheless, considerations like ergonomics also play a significant role while deciding the vehicle structure. As an example, A-pillar (front pillar) plays a major role in vehicle's passive safety. Increase in its cross section size, beyond a particular grade and gauge optimization is eminent to meet target requirements of rigidity and crash. However, the increased obstruction because of the wider section would not only lead to poor visibility and a claustrophobic feeling to the driver but also lead to a lesser response time for him or her to prevent a collision. Obstruction from A-pillar can be a subjective feeling of driver but it should also be quantified and measured to optimize the A-pillar structure. Numerous methodologies are being adopted globally to measure the A-pillar obstruction.
Technical Paper

Model Based Design of xEV Powertrain Controls

2012-01-09
2012-28-0023
Powertrain Control development has gone through many changes in terms of process, tools and practice at all OEM's across the geography. This is mainly driven by increased number of powertrain components for control, shorter development schedules, cost control, and the need to realize the potential of electronic control to increase the performance, efficiency, safety and comfort. With the significant advancement in Powertrain Controls and additions of electronic functions, it has become imperative to automate the controller development process in the V-cycle to reduce the time and make the process more efficient while detecting any logic failures upfront at the early stage of the development cycle. Traditional practices and tools of defining the controls cannot meet new requirements. Model Based Design (MBD) approach is a promising solution to meet the critical needs of powertrain control engineering to define the control logic and validate.
Technical Paper

Weight Optimization of “Cap, Wheel Center” For Passenger Car

2011-04-12
2011-01-0522
In developing countries steel wheel is generally used in the low end passenger cars. Steel wheel has a hole at center, known as wheel bore which give the provision for tightening & un-tightening of axle nut. Due to this hole, the surrounding parts are visible which reduces the aesthetic appearance of the wheel. To cover the center portion of the wheel, “Cap, Wheel Center” also called as “Center Cap” is used, which is an aesthetic oriented part as shown in Figure 1. Center Cap is designed in such a manner that it can be easily removed & re-fitted during the service of vehicle. This paper explains the systematic methodology to optimize the weight of the “Center Cap” without compromising the performance & aesthetic appearance. Various analytical calculations have been done to achieve base line value of the design which was further justified using CAE (computer aided engineering) to optimize the performance & weight.
X