Refine Your Search

Topic

Search Results

Technical Paper

Development of Predictive Model for Flexible Pedestrian Legform Impactor Injury

2024-04-09
2024-01-2511
Road accidents are a major concern worldwide and vulnerable road users make up more than half of the victims of road accident deaths. In order to combat this issue, several countries worldwide have mandated pedestrian safety test regulations viz., AIS100 & UN-R127. One of the requirements of the regulations is when Flexible Pedestrian Legform Impactor (Flex-PLI) is impacted onto the frontal structure of the vehicle at a speed of 40kmph, the Bending moment (BM) of tibia bone of Flex-PLI shall not exceed the regulatory limit of 340Nm. In this paper, we have built a statistical model for predicting the BM of tibia in Flex-PLI using regression analysis. 13 vehicles have been selected from all applicable vehicle categories viz., Sedan, hatchback, Coupe & SUV/MUV for this undertaking. An exhaustive analysis of the vehicle frontal structures and Flex-PLI test videos have been done to identify & measure the design parameters to be used as predictor variables.
Technical Paper

The Aerodynamic Development of the New BREZZA and FRONX

2024-04-09
2024-01-2535
MSIL (Maruti Suzuki India Limited), India’s leading carmaker, has various SUVs (Sports Utility Vehicle) in its model lineup. Traditionally, SUVs are considered to have a bold on-road presence and this bold design language often deteriorates aerodynamic drag performance. Over the years, the demand for this segment has significantly grown, whereas the CAFE (Corporate Average Fuel Economy) norms have become more stringent. To cater this growing market demand, MSIL planned for two new SUVs: (1) New BREZZA - A bolder design with similar targeted aerodynamic performance compared to its predecessor (BREZZA-2016) and (2) FRONX - A new cross-over SUV vehicle targeted best-in-class aerodynamic performance in this category at MSIL. This paper illustrates the aerodynamic development process for these two SUVs using CFD (Computational Fluid Dynamics) and full scale WTT (Wind Tunnel Test).
Technical Paper

Effect of Natural Gas Composition and Rail Pressure on Injector Performance

2024-01-16
2024-26-0079
The demand for Compressed Biogas (CBG) as an alternative fuel to Compressed Natural Gas (CNG) is rapidly increasing due to its renewable nature and environmental benefits. However, CBG and H-CNG has variations in gas composition standards as compared to CNG, which may require hardware changes in fuel system to adapt to these variations while ensuring the same performance. Fuel delivery system of CNG vehicle comprises of fuel storage tank, fuel delivery circuit, pressure regulator, fuel rail and injector. Performance of a fuel injector and pressure regulator are critical factors in the efficient and effective delivery of gaseous fuel to engine. This paper theoretically examines fuel flow requirement of injectors with different gas compositions such as CNG, CBG, G25, G20, H-CNG and taking in consideration other factors impacting overall performance.
Technical Paper

Resonator Design Study to Reduce Pressure Pulsation from CNG Injector

2024-01-16
2024-26-0233
With the advent of upcoming stringent automobile emission norms globally, it is inevitable for original equipment manufacturers (OEMs) to shift towards greener alternatives. Use of compressed natural gas (CNG) is a preferred solution as it is a relatively clean burning fuel and it doesn’t have significant loss in vehicle efficiency and performance. Modern day customers are more aware and sensitive towards vehicle noise, vibration and harshness (NVH). Hence, OEMs must cater to this demand through optimized design and layout. In a passenger vehicle, CNG is stored at high pressure and delivered to injectors after pressure reduction at a regulator. During engine idling, the opening and closing motion of the CNG injector generates back pulsation and these pulsations cause vibrations which may propagate through other components in the delivery path and perceived as noise inside vehicle cabin.
Technical Paper

Design and Development of EGR Valve Controller

2024-01-16
2024-26-0348
Various emission and fuel economy norms for passenger cars have been introduced by the government worldwide. In India, meeting each revision of the Bharat Stage (BS) emission standards and Corporate Average Fuel Economy (CAFE) norms is challenging, and requires the incorporation of new technologies into IC engines. One such technology used in gasoline engines is Exhaust gas recirculation (EGR). The entry of dust particles into the EGR system makes it vulnerable to malfunction. One such fleet validation challenge of EGR valve malfunction has been addressed in this study, where the EGR valve became stuck due to dust entry, leading to engine hunting and stalling. The approach followed for the issue resolution demonstrates a method of developing an EGR valve controller for simulating the failure on a bench setup. The controller setup was built around a microcontroller chip that accurately operated the valve with similar logic to that of the vehicle ECU.
Technical Paper

Study to Improve Engine Efficiency by Reducing Backpressure

2023-04-11
2023-01-0946
Exhaust system of an automobile is primarily employed in automobile to purify exhaust gases and reduce noise due to combustion. However, a side-effect of the above function is the increase in backpressure. As specified in various literatures, an increase in backpressure can lead to a deterioration on engine performance (Power & torque). Benefit of backpressure reduction can be further taken in terms improving the power & torque of engine or improving the fuel economy. With growing concerns related to global warming and CO2 emissions, reducing exhaust back pressure is one of the promising areas in engine design in order to improve the fuel economy of the automobile and achieving carbon neutrality targets. However, reducing the back pressure generally tends to deteriorate the noise attenuation performance of the Exhaust system.
Technical Paper

Flexible Pedestrian Legform Impactor [FlexPLI] - Examination for Its Repeatability and Reproducibility

2021-09-22
2021-26-0011
Recently, the Flexible Pedestrian Legform Impactor (or Flex-PLI) - an advancement over the existing EEVC legform - was included in the Global Technical Regulation for Pedestrian Safety viz. GTR-9. The legform tool undergoes impact testing with vehicle at 40kmph in order to evaluate the frontal structure of vehicle for Pedestrian Safety. Being more biofidelic design over the old EEVC legform, Flex-PLI is more flexible and sensitive towards different vehicle designs, shapes and inner bumper structure. This flexibility and sensitiveness of its design also calls for examining the Manufactured FlexPLI for its efficacy under impact testing in terms of its Durability, Repeatability and Reproducibility. This study aims at validating the performance of the test device by building a platform for computing the variations in test results. In this study, three key aspects are identified to measure the performance of this device - Durability, Repeatability, and Reproducibility.
Technical Paper

Windshield Defrosting Analysis: A Numerical and Experimental Approach

2019-10-11
2019-28-0115
The outside visibility through the windshield and ORVM visibility through the side glasses are critical for safe driving. The frost deposition on the Windshield and side glasses in the cold climatic condition impairs the outside and ORVM visibility during driving and hence leads to an unsafe driving condition. In India, the regulation AIS-084 governs the defrosting standard. The defrosting performance evaluation by testing cannot be performed at concept stage when the vehicle prototype is not available. It also increases the cost of vehicle development due to increase in the number of prototype used for testing. This paper explains about the in-house developed CFD methodology to evaluate the windshield defrosting performance of the vehicle in the concept stage when no vehicle proto is available and cost of countermeasure for defrosting performance improvent is very less. This methodology is implemented for some of the existing models.
Technical Paper

Effect of PVC Skin and Its Properties on Automotive Door Trim Inserts

2017-03-28
2017-01-0492
Plastic plays a major role in automotive interiors. Till now most of the Indian automobile industries are using plastics mainly to cover the bare sheet metal panels and to reduce the weight of the vehicle along with safety concerns. Eventually Indian customer requirement is changing towards luxury vehicles. Premium look and luxury feel of the vehicle plays an equal role along with fuel economy and cost. Interior cabin is the place where aesthetics and comfort is the key to attract customers. Door Trims are one of the major areas of interiors where one can be able to provide premium feeling to the customer by giving PVC skin and decorative inserts. This paper deals with different types of PVC skins and its properties based on process constraints, complexity of the inserts. Door trim inserts can be manufactured by various methods like adhesive pasting, thermo-compression molding and low pressure injection molding process etc.
Technical Paper

Effects of Excitation Voltage on Piezoresistive and Resistive Sensor Output Characteristics

2016-02-01
2016-28-0182
In laboratory car crash tests, Anthropomorphic Test Devices (ATD) are equipped with piezoresistive and resistive sensors for occupant injury assessment. Accelerometers are inertial transducers that convert acceleration into electrical output which can be easily recorded by a Data Acquisition System (DAS). For an accelerometer, this electrical output mainly depends upon subjected acceleration, sensitivity of the accelerometer, excitation voltage and gain provided. Before use in testing, accelerometers are calibrated at a standard excitation (manufacturer decided) voltage to determine characteristics like Sensitivity, Sensitivity per unit excitation voltage, Zero Measurand Output (ZMO), Transverse Sensitivity etc. It is observed that these characteristics are highly dependent on the excitation voltage. In testing, due to limitations of DAS and/or other unwanted noise in the excitation voltage, these accelerometers are sometimes used at a different excitation voltage.
Technical Paper

Vehicular Cabin Noise Source Identification and Optimization Using Beamforming and Acoustical Holography

2014-04-01
2014-01-0004
The automobile market is witnessing a different trend altogether - the trend of shifting preference from powerful to fuel efficient machines. Certain factors like growing prices of fuel, struggling global economy, environmental sensitiveness and affordability have pushed the focus on smaller, efficient and cleaner automobiles. To meet such requirements, the automobile manufacturers, are going stringent on vehicle weights. Using electric and hybrid power-plants are other options to meet higher fuel efficiency and emission requirements but significant cost of these technologies have kept their growth restricted to only few makers and to only few regions of the globe. Optimizing the vehicle weight is a more attractive option for makers as it promises lesser time to market, is low on investment and allows use of existing platforms.
Technical Paper

Application and Development Challenges of Dynamic Damper in Cabin Booming Noise Elimination

2014-04-01
2014-01-0013
Automotive OEMs quest for vehicle body light weighting, increase in Fuel efficiency along with significant cut in the emissions pose significant challenges. Apart from the effect on vehicle handling, the reduction of vehicle weight also results in additional general requirements for acoustic measures as it is an important aspect that contributes to the comfort and the sound quality image of the vehicle, thus posing a unique challenge to body designers and NVH experts. Due to these conflicting objectives, accurate identification along with knowledge of the transfer paths of vibrations and noise in the vehicle is needed to facilitate measures for booming noise dampening and vehicle structure vibration amplitude. This paper focuses on the application of a unique design and development of vehicle body structure anti-vibration dynamic damper (DD), unique in its aspect in controlling booming noise generated at a specific RPM range.
Technical Paper

CAE Driven Improvement in Frontal Offset Crash Performance of a Compact Car

2014-04-01
2014-01-0375
Offset crash compliance of a compact car is severe due to the compact layout and stringent fuel economy, weight and cost targets. Scope of the current work is to improve the structural crash performance of a compact car through CAE, in order to meet the offset frontal crash requirements as per ECE R94 Regulation. The project has been classified in three main phases. First phase includes the evaluation of baseline vehicle in CAE. In order to ensure the accuracy of CAE prediction, a methodology for predicting Spotweld rupture was implemented. Using this methodology, it is possible to find out the location and time of spotweld rupture as well as propagation of spotweld rupture in CAE. CAE results of spotweld rupture prediction showed good agreement with the physical test. In second phase, design iterations were carried out in order to meet the performance targets of structural deformation.
Technical Paper

Improving Side Crash Performance of a Compact Car via CAE

2014-04-01
2014-01-0546
The side impact accident is one of the very severe crash modes for the struck side occupants. According to NHTSA fatality reports, side impact accounts for over 25% of the fatalities in the US. Similar fatality estimates have been reported in the EU region. Side crash compliance of a compact car is more severe because of the less space available between the occupant and the vehicle structure, stringent fuel economy, weight and cost targets. The current work focuses on the development of Side body structure of a compact car through Computer Aided Tools (CAE), for meeting the Side crash requirements as per ECE R95 Regulation. A modified design philosophy has been adopted for controlling the intrusion of upper and lower portion of B-pillar in order to mitigate the injury to Euro SIDII dummy. At first, initial CAE evaluation of baseline vehicle was conducted.
Technical Paper

Improving Offset Crash Performance and Injury Mitigation via Multi-Body Simulation and Structural CAE

2014-04-01
2014-01-0939
Recent advancement in numerical solutions and advanced computational power has given a new dimension to the design and development of new products. The current paper focuses on the details of work done in order to improve the vehicle performance in Offset deformable Barrier (ODB) crash as per ECER-94. A Hybrid approach involving the Structural Crash CAE as well as Multi-body Simulation in MADYMO has been adopted. In first phase of the development, CAE results of Structural deformation as well as Occupant injury of the baseline model were correlated with physical test data. The second phase includes the improvement in intrusion and crash energy absorption by structural countermeasures in the vehicle body. In third phase parametric study has been carried out via Madymo simulation in order to decide on the factors which can be controlled in order to mitigate the Occupant injury. Recommendations of Madymo simulation have been confirmed by conducting Physical sled tests.
Technical Paper

Passenger Car Front End Optimization Using CFD Simulation

2014-04-01
2014-01-0627
Increased engine thermal load, front end styling and compact vehicle requirements have led to significant challenges for vehicle front end designer to provide innovative thermal management solutions. The front end cooling module design which consists of condenser, radiator, fan and intercooler is an important part of design as it ensures adequate heat removal capacity of radiator over a wide range of operating conditions to prevent overheating of engine. The present study describes the optimization of cooling air flow opening in the front end using CFD methodology of a typical passenger car. The predicted vehicle system resistance curve and coolant inlet temperature to the radiator are used for the selection of cooling modules and to further optimize the front end cooling opening area. This leds to the successful optimization of the front end, selection of cooling modules with significant cost savings by reducing prototype testing and design cycle time.
Technical Paper

Supervisory Control Strategy for Mild Hybrid System - A Model Based Approach

2013-04-08
2013-01-0503
In this paper, a mild hybrid system is studied for Indian drive conditions. The study is focused to first come up with detailed component sizing through simulation. Different features of mild hybrid system are studied for their individual and cumulative contribution in the fuel economy improvement over the base non-hybrid vehicle. Model based development approach has been employed to develop a supervisory control strategy for such a system. Model based design saves time and cost as it gives flexibility to the control engineer to validate the control design at an early stage of development. The supervisory control strategy is first tested in a simulated environment and then, on a vehicle. To prove the system function, a full hybrid vehicle is experimented as a mild hybrid configuration. Experiments are conducted on the test vehicle over MIDC (certification cycle) to understand the impact of mild hybridization on fuel economy and tail pipe emissions
Technical Paper

Passenger Car Front Air - Dam Design Based on Aerodynamic and Fuel Economy Simulations

2013-01-09
2013-26-0063
Computational Fluid Dynamics (CFD) is used extensively in the optimization of modern passenger car to meet the ever growing need of higher fuel economy, better engine and underbody cooling. One of the way to achieve better fuel economy is to reduce the vehicle overall resistance to flow, know as drag. Vehicle drag is a complex phenomenon governed by vehicle styling, component shape, layout and driving velocity and road conditions. To reduce the drag a lot of aero-parts are used these days such as air-dam, skirts, spoiler, undercover, dams etc. However the design of these aero-parts must be optimized to get the desired result as their addition alone does not guarantee improvement in performance. This paper aims at studying the effect of air-dam height and position on vehicle aerodynamics. Also the effect of air-dam addition was verified using fuel economy simulations.
Technical Paper

Optimal Torque Handling in Hybrid Powertrain for Fuel Economy Improvement

2013-01-09
2013-26-0068
In this work, a parallel full Hybrid Electric Vehicle (HEV) was optimized to further lower its carbon footprint without opting for any additional hardware change. The study was focused to first recognize the system efficiency of the HEV and identify its low efficiency points over the MIDC. Thereafter, different functions of the HEV were studied for their individual and cumulative contribution in the fuel economy improvement over the base non-hybrid vehicle. This, along with the low system efficiency points helped in identifying the potential areas for improvement in fuel economy. With changes in calibration and control strategies resulting in an optimal torque handling between the E-machine and the ICE, it was established through simulation and subsequent experiments conducted on chassis dynamometer, that the fuel economy of the HEV tested can be improved with the performance remaining unchanged and emissions meeting regulatory requirements.
Technical Paper

A Study on the Idle Combustion Stability of a CNG Powered Naturally Aspirated Engine

2013-01-09
2013-26-0003
In view of rising oil prices and concern for the greenhouse gas emissions, the need for greener and efficient engines is increasing. Thus, automobile manufacturers are trying to improve the performance and efficiency of the engine while keeping compliance with the stringent emission norms. CNG, with its high H/C ratio, makes it a clean fuel by significantly reducing the emission of green-house gas carbon-dioxide. CNG, being cheap compared to other conventional fuels, is an added advantage and hence is gaining popularity. Along with improvement in the part load and full load efficiency, Engine manufactures are looking to lower the idle speed for better fuel economy. Lowering the idle speed has to be optimized as, it reduces the combustion stability of the engine which in turn increases the variation of Indicated Mean Effective Pressure (IMEP) resulting in high structural vibration from the engine and to vehicle body.
X