Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Effect of Wet Liner Vibration on Ring-liner Interaction in Heavy-duty Engines

2023-09-29
2023-32-0140
Lubricating oil consumption (LOC) is a direct source of hydrocarbon and particulate emissions from internal combustion engines. LOC also inhibits the lifetime of exhaust aftertreatment system components, preventing their ability to effectively filter out other harmful emissions. Due to its influence on piston ring- bore conformability, bore distortion is arguably the most critical parameter for engine designers to consider in prevention of LOC. Bore distortion also has a significant influence on the contact forces between the piston ring and cylinder wall, which determine the wear rate of the ring and cylinder wall and can cause durability issues. Two drivers of bore distortion: thermal expansion and head bolt stresses, are routinely considered in conformability and contact analyses. Separately, bore distortion/vibration due to piston impact and combustion/cylinder pressures has been previously analyzed in wet liner engines for coolant cavitation and noise considerations.
Technical Paper

Study of Position Sensorless Control to Generator for 100% Electric-Drive Hybrid Vehicles

2023-09-29
2023-32-0178
There are two primary technical issues in the application of position sensorless control to generators for 100% electric-drive hybrid vehicles. The first is the risk of losing control when position sensorless estimation methods are changed in accordance with the generator speed, while. The second is the reduction in the maximum torque if the rate of change in the generator speed is extremely large in a relatively low-rotation-speed area. This study proposes countermeasures for each issue and their effects examines them via simulations and experiments.
Technical Paper

Predictive Piston Cylinder Unit Simulation - Part II: Novel Methodology of Friction Simulation Validation Utilizing Floating-Liner Measurements

2023-04-11
2023-01-0415
The increasing demand for environmentally friendly and fuel-efficient transportation and power generation requires further optimization and minimization of friction power losses. With up to 50% of the overall friction, the piston cylinder unit (PCU) shows most potential within the internal combustion engine (ICE) to increase mechanical efficiency. Calculating friction of internal combustion engines, especially the friction contribution from piston rings and skirt, requires detailed knowledge of the dynamics and lubrication regime of the components being in contact. Part I of this research presents a successful match of simulated and measured piston inter-ring pressures at numerous operation points [1] and constitutes the starting point for the comparison of simulated and measured piston group friction forces as presented in this research.
Technical Paper

Evaluation of Equivalent Temperature Using Thermal Factors : Validation of a Calculation Method Based on ISO 14505-4:2021 in a Vehicle Cabin

2022-03-29
2022-01-0190
This paper describes a method for evaluating the equivalent temperature in vehicle cabins based on the new international standard ISO 14505-4, published in 2021. ISO 14505-4 defines two simulation methods to determine a thermal comfort index “equivalent temperature.” One method uses a numerical thermal manikin, and the other uses thermal factors to calculate. This study discusses the latter method to validate its accuracy, identify the key points to consider, and examine its advantages and disadvantages. First, the definition of equivalent temperature and the equation to calculate the equivalent temperature using thermal factors, such as air temperature, radiant temperature, solar radiation, and air velocity, are explained. In addition, the experiments and simulation methods are described.
Technical Paper

Benefits of Octane-On-Demand in an E10-Gasoline Engine Vehicle Using an On-Board Fuel Separator

2022-03-29
2022-01-0424
Knock in gasoline engines at higher loads is a significant constraint on torque and efficiency. The anti-knock property of a fuel is closely related to its research octane number (RON). Ethanol has superior RON compared to gasoline and thus has been commonly used to blend with gasoline in commercial gasolines. However, as the RON of a fuel is constant, it has not been used as needed in a vehicle. To wisely use the RON, an On-Board Separation (OBS) unit that separates commercial gasoline with ethanol content into high-octane fuel with high ethanol fraction and a lower octane remainder has been developed. Then an onboard Octane-on-demand (OOD) concept uses both fuels in varying proportion to provide to the engine a fuel blend with just enough RON to meet the ever changing octane requirement that depends on driving pattern.
Journal Article

Stainless Steel Thermal Spray Coating of Cylinder Bores for VC-Turbo Engine

2021-04-06
2021-01-0343
Nissan’s variable compression turbo (VC-Turbo) engine has a multilink mechanism that continuously adjusts the top and bottom dead centers of the piston to change the compression ratio and achieve both fuel economy and high power performance. Increasing the exhaust gas recirculation (EGR) rate is an effective way to further reduce the fuel consumption, although this increases the exhaust gas condensation in the cylinder bores, causing a more corrosive environment. When the EGR rate is increased in a VC-Turbo engine, the combined effect of piston sliding and exhaust gas condensation at the top dead center accelerates the corrosive wear of the thermal spray coating. Stainless steel coating is used to improve the corrosion resistance, but the adhesion strength between the coating and the cylinder bores is reduced.
Technical Paper

Study of the Effects of Oil Supply and Piston Skirt Profile on Lubrication Performance in Power Cylinder Systems

2019-12-19
2019-01-2364
In internal combustion engines, the majority of the friction loss associated with the piston takes place on the thrust side in early expansion stroke. Research has shown that the Friction Mean Effective Pressure (FMEP) of the engine can be reduced if proper modifications to the piston skirt, which is traditionally barrel-shaped, are made. In this research, an existing model was applied for the first time to study the effects of different oil supply strategies for the piston assembly. The model is capable of tracking lubricating oil with the consideration of oil film separation from full film to partial film. It is then used to analyze how the optimized piston skirt profile investigated in a previous study reduces friction.
Technical Paper

Reliable Processes of Simulating Liner Roughness and Its Lubrication Properties

2019-04-02
2019-01-0178
Topology of liner finish is critical to the performance of internal combustion engines. Proper liner finish simulation processes lead to efficient engine design and research. Fourier methods have been well studied to numerically generate liner topology. However, three major issues wait to be addressed to make the generation processes feasible and reliable. First, in order to simulate real plateau honed liners, approaches should be developed to calculate accurate liner geometric parameters. These parameters are served as the input of the generation algorithm. Material ratio curve, the common geometry calculation method, should be modified so that accurate root mean square of plateau height distribution could be obtained. Second, the set of geometric parameters used in generating liner finish (ISO 13565-2) is different from the set of parameters used in manufacturing industry (ISO 13565-3). Quantitative relations between these two sets should be studied.
Technical Paper

Validation of Wireless Power Transfer up to 11kW Based on SAE J2954 with Bench and Vehicle Testing

2019-04-02
2019-01-0868
Wireless Power Transfer (WPT) promises automated and highly efficient charging of electric and plug-in-hybrid vehicles. As commercial development proceeds forward, the technical challenges of efficiency, interoperability, interference and safety are a primary focus for this industry. The SAE Vehicle Wireless Power and Alignment Taskforce published the Recommended Practice J2954 to help harmonize the first phase of high-power WPT technology development. SAE J2954 uses a performance-based approach to standardizing WPT by specifying ground and vehicle assembly coils to be used in a test stand (per Z-class) to validate performance, interoperability and safety. The main goal of this SAE J2954 bench testing campaign was to prove interoperability between WPT systems utilizing different coil magnetic topologies. This type of testing had not been done before on such a scale with real automaker and supplier systems.
Journal Article

Modeling of Oil Transport between Piston Skirt and Cylinder Liner in Internal Combustion Engines

2019-04-02
2019-01-0590
The distribution of lubricating oil plays a critical role in determining the friction between piston skirt and cylinder liner, which is one of the major contributors to the total friction loss in internal combustion engines. In this work, based upon the experimental observation an existing model for the piston secondary motion and skirt lubrication was improved with a physics-based model describing the oil film separation from full film to partial film. Then the model was applied to a modern turbo-charged SI engine. The piston-skirt FMEP predicted by the model decreased with larger installation clearance, which was also observed from the measurements using IMEP method at the rated. It was found that the main period of the cycle exhibiting friction reduction is in the expansion stroke when the skirt only contacts the thrust side for all tested installation clearances.
Technical Paper

Effects of Fuel Properties Associated with In-Cylinder Behavior on Particulate Number from a Direct Injection Gasoline Engine

2017-03-28
2017-01-1002
The purpose of this work was to gain a fundamental understanding of which fuel property parameters are responsible for particulate emission characteristics, associated with key intermediate behavior in the engine cylinder such as the fuel film and insufficient mixing. Accordingly, engine tests were carried out using various fuels having different volatility and chemical compositions under different coolant temperature conditions. In addition, a fundamental spray and film visualization analysis was also conducted using a constant volume vessel, assuming the engine test conditions. As for the physical effects, the test results showed that a low volatility fuel displayed high particulate number (PN) emissions when the injection timing was advanced. The fundamental test clearly showed that the amount of fuel film on the impingement plate increased under such operating conditions with a low volatility fuel.
Journal Article

An Investigation on the Ignition Characteristics of Lubricant Component Containing Fuel Droplets Using Rapid Compression and Expansion Machine

2016-10-17
2016-01-2168
With the development of downsized spark ignition (SI) engines, low-speed pre-ignition (LSPI) has been observed more frequently as an abnormal combustion phenomenon, and there is a critical need to solve this issue. It has been acknowledged that LSPI is not directly triggered by autoignition of the fuel, but by some other material with a short ignition delay time. It was previously reported that LSPI can be caused by droplets of lubricant oil intermixed with the fuel. In this work, the ignition behavior of lubricant component containing fuel droplets was experimentally investigated by using a constant volume chamber (CVC) and a rapid compression and expansion machine (RCEM), which enable visualization of the combustion process in the cylinder. Various combinations of fuel compositions for the ambient fuel-air mixture and fractions of base oil/metallic additives/fuel for droplets were tested.
Journal Article

A Study of Combustion Technology for a High Compression Ratio Engine: The Influence of Combustion Chamber Wall Temperature on Knocking

2016-04-05
2016-01-0703
Technologies for improving the fuel economy of gasoline engines have been vigorously developed in recent years for the purpose of reducing CO2 emissions. Increasing the compression ratio is an example of a technology for improving the thermal efficiency of gasoline engines. A significant issue of a high compression ratio engine for improving fuel economy and low-end torque is prevention of knocking under a low engine speed. Knocking is caused by autoignition of the air-fuel mixture in the cylinder and seems to be largely affected by heat transfer from the intake port and combustion chamber walls. In this study, the influence of heat transfer from the walls of each part was analyzed by the following three approaches using computational fluid dynamics (CFD) and experiments conducted with a multi-cooling engine system. First, the temperature rise of the air-fuel mixture by heat transfer from each part was analyzed.
Technical Paper

Introducing a New Piston Skirt Profile to Reduce Engine Friction

2016-04-05
2016-01-1046
The piston’s skirt shape is a key design parameter since it critically influences lateral displacement, tilting movement, oil transport and consequently engine performances. This study proposes an alternative skirt profile that aims to reduce frictional losses between the piston and cylinder liner. Qualitatively, the proposed profile, aims to reduce solid-to-solid contact friction by increasing the total hydrodynamic forces generated on the skirt to balance side forces, and to prevent both sides of the skirt to interact with the liner simultaneously. The new skirt’s profile has been first studied and optimized using a piston secondary motion model and then prototyped and tested on a floating liner test bench, showing a 12% average reduction in total piston FMEP.
Journal Article

A Study of a Multistage Injection Mechanism for Improving the Combustion of Direct-Injection Gasoline Engines

2015-04-14
2015-01-0883
Technologies for improving the fuel economy of gasoline engines have been vigorously developed in recent years for the purpose of reducing CO2 emissions. Increasing the compression ratio for improving thermal efficiency and downsizing the engine based on fuel-efficient operating conditions are good examples of technologies for enhancing gasoline engine fuel economy. A direct-injection system is adopted for most of these engines. Direct injection can prevent knocking by lowering the in-cylinder temperature through fuel evaporation in the cylinder. Therefore, direct injection is highly compatible with downsized engines that frequently operate under severe supercharging conditions for improving fuel economy as well as with high compression ratio engines for which susceptibility to knocking is a disadvantage.
Technical Paper

Impingement Behavior of Fuel Droplets on Oil Film

2015-04-14
2015-01-0913
In a direct injection gasoline engine, the impingement of injected fuel on the oil film, i.e. cylinder liner gives rise to various problems such as abnormal combustion, oil dilution and particulate matter emission. Therefore, in order to solve these problems, it is necessary to have a clear understanding of the impingement behavior of the fuel spray onto the oil film. However, there is little information on the impingement behavior of the fuel droplet onto the oil film, whereas many investigations on the impingement behavior of the fuel droplet onto the fuel film are reported. In this study, fundamental investigations were performed for the purpose of clarifying the impingement behavior of the fuel spray onto the oil film. A single fuel droplet mixed with fluorescence dye was dripped on the oil film. To separately measure the fuel and the oil after impingement, simultaneous Mie scattering and laser-induced fluorescence (LIF) methods were performed.
Journal Article

On the Nature of Particulate Emissions from DISI Engines at Cold-Fast-Idle

2014-04-01
2014-01-1368
Particulate emissions from a production gasoline direct injection spark ignition engine were studied under a typical cold-fast-idle condition (1200 rpm, 2 bar NIMEP). The particle number (PN) density in the 22 to 365 nm range was measured as a function of the injection timing with single pulse injection and with split injection. Very low PN emissions were observed when injection took place in the mid intake stroke because of the fast fuel evaporation and mixing processes which were facilitated by the high turbulent kinetic energy created by the intake charge motion. Under these conditions, substantial liquid fuel film formation on the combustion chamber surfaces was avoided. PN emissions increased when injection took place in the compression stroke, and increased substantially when the fuel spray hit the piston.
Technical Paper

Development of Regenerative Cooperative Braking System with Conventional ESC

2014-04-01
2014-01-0331
HEV and EV markets are in a rapid expansion tendency. Development of low-cost regenerative cooperation brake system is needed in order to respond to the consumers needs for HEV and EV. Regenerative cooperation brake system which HEV and EV are generally equipped with has stroke simulator. We developed simple composition brake system based on the conventional ESC unit without the stroke simulator, and our system realized a low-cost regenerative cooperation brake. The key technologies are the quiet pressurization control which can be used in the service application, which is to make brake force depending on brake travel, by gear pump and the master cylinder with idle stroke to realize regenerative cooperation brake. Thanks to the key technologies, both the high regenerative efficiency and the good service brake feeling were achieved.
Technical Paper

In Situ Control of Lubricant Properties for Reduction of Power Cylinder Friction through Thermal Barrier Coating

2014-04-01
2014-01-1659
Lowering lubricant viscosity to reduce friction generally carries a side-effect of increased metal-metal contact in mixed or boundary lubrication, for example near top ring reversal along the engine cylinder liner. A strategy to reduce viscosity without increased metal-metal contact involves controlling the local viscosity away from top-ring-reversal locations. This paper discusses the implementation of insulation or thermal barrier coating (TBC) as a means of reducing local oil viscosity and power cylinder friction in internal combustion engines with minimal side-effects of increased wear. TBC is selectively applied to the outside diameter of the cylinder liner to increase the local oil temperature along the liner. Due to the temperature dependence of oil viscosity, the increase in temperature from insulation results in a decrease in the local oil viscosity.
Technical Paper

Optimizing Base Oil Viscosity Temperature Dependence For Power Cylinder Friction Reduction

2014-04-01
2014-01-1658
Lubricant viscosity along the engine cylinder liner varies by an order of magnitude due to local temperature variation and vaporization effects. Tremendous potential exists for fuel economy improvement by optimizing local viscosity variations for specific operating conditions. Methods for analytical estimation of friction and wear in the power-cylinder system are reviewed and used to quantify opportunities for improving mechanical efficiency and fuel economy through lubricant formulation tailored specifically to liner temperature distributions. Temperature dependent variations in kinematic viscosity, density, shear thinning, and lubricant composition are investigated. Models incorporating the modified Reynolds equation were used to estimate friction and wear under the top ring and piston skirt of a typical 11.0 liter diesel engine.
X