Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Effect of Wet Liner Vibration on Ring-liner Interaction in Heavy-duty Engines

2023-09-29
2023-32-0140
Lubricating oil consumption (LOC) is a direct source of hydrocarbon and particulate emissions from internal combustion engines. LOC also inhibits the lifetime of exhaust aftertreatment system components, preventing their ability to effectively filter out other harmful emissions. Due to its influence on piston ring- bore conformability, bore distortion is arguably the most critical parameter for engine designers to consider in prevention of LOC. Bore distortion also has a significant influence on the contact forces between the piston ring and cylinder wall, which determine the wear rate of the ring and cylinder wall and can cause durability issues. Two drivers of bore distortion: thermal expansion and head bolt stresses, are routinely considered in conformability and contact analyses. Separately, bore distortion/vibration due to piston impact and combustion/cylinder pressures has been previously analyzed in wet liner engines for coolant cavitation and noise considerations.
Technical Paper

Demonstration Test of Automotive Photovoltaic System for an Electric Vehicle

2023-09-29
2023-32-0137
A high-power photovoltaic (PV) system for an electric vehicle was fabricated. The total rated power of the PV panels was 1150 W. A demonstration test was conducted for a year. The test data showed that the prototype PV system was able to generate energy equivalent to approximately 7,100 km/year in driving distance. It was also found that if the vehicle is used for commuting about 10 km one way, it is mostly not necessary to recharge the vehicle from the grid throughout the year. In addition, the system was able to maintain maximum power point tracking (MPPT) control during driving even when the solar radiation changed frequently.
Technical Paper

Predictive Piston Cylinder Unit Simulation - Part II: Novel Methodology of Friction Simulation Validation Utilizing Floating-Liner Measurements

2023-04-11
2023-01-0415
The increasing demand for environmentally friendly and fuel-efficient transportation and power generation requires further optimization and minimization of friction power losses. With up to 50% of the overall friction, the piston cylinder unit (PCU) shows most potential within the internal combustion engine (ICE) to increase mechanical efficiency. Calculating friction of internal combustion engines, especially the friction contribution from piston rings and skirt, requires detailed knowledge of the dynamics and lubrication regime of the components being in contact. Part I of this research presents a successful match of simulated and measured piston inter-ring pressures at numerous operation points [1] and constitutes the starting point for the comparison of simulated and measured piston group friction forces as presented in this research.
Technical Paper

Evaluation of Equivalent Temperature Using Thermal Factors : Validation of a Calculation Method Based on ISO 14505-4:2021 in a Vehicle Cabin

2022-03-29
2022-01-0190
This paper describes a method for evaluating the equivalent temperature in vehicle cabins based on the new international standard ISO 14505-4, published in 2021. ISO 14505-4 defines two simulation methods to determine a thermal comfort index “equivalent temperature.” One method uses a numerical thermal manikin, and the other uses thermal factors to calculate. This study discusses the latter method to validate its accuracy, identify the key points to consider, and examine its advantages and disadvantages. First, the definition of equivalent temperature and the equation to calculate the equivalent temperature using thermal factors, such as air temperature, radiant temperature, solar radiation, and air velocity, are explained. In addition, the experiments and simulation methods are described.
Technical Paper

Benefits of Octane-On-Demand in an E10-Gasoline Engine Vehicle Using an On-Board Fuel Separator

2022-03-29
2022-01-0424
Knock in gasoline engines at higher loads is a significant constraint on torque and efficiency. The anti-knock property of a fuel is closely related to its research octane number (RON). Ethanol has superior RON compared to gasoline and thus has been commonly used to blend with gasoline in commercial gasolines. However, as the RON of a fuel is constant, it has not been used as needed in a vehicle. To wisely use the RON, an On-Board Separation (OBS) unit that separates commercial gasoline with ethanol content into high-octane fuel with high ethanol fraction and a lower octane remainder has been developed. Then an onboard Octane-on-demand (OOD) concept uses both fuels in varying proportion to provide to the engine a fuel blend with just enough RON to meet the ever changing octane requirement that depends on driving pattern.
Technical Paper

Modeling the Three Piece Oil Control Ring Dynamics and Oil Transport in Internal Combustion Engines

2021-04-06
2021-01-0345
Three-piece oil control rings (TPOCR) are widely used in the majority of modern gasoline engines and they are critical for lubricant regulation and friction reduction. Despite their omnipresence, the TPOCRs’ motion and sealing mechanisms are not well studied. With stricter emission standards, gasoline engines are required to maintain lower oil consumption limits, since particulate emissions are strongly correlated with lubricant oil emissions. This piqued our interest in building a numerical model coupling TPOCR dynamics and oil transport to explain the physical mechanisms. In this work, a 2D dynamics model of all three pieces of the ring is built as the main frame. Oil transport in different zones are coupled into the dynamics model. Specifically, two mass-conserved fluid sub-models predict the oil movement between rail liner interface and rail groove clearance to capture the potential oil leakage through TPOCR. The model is applied on a 2D laser induced fluorescence (2D-LIF) engine.
Journal Article

Stainless Steel Thermal Spray Coating of Cylinder Bores for VC-Turbo Engine

2021-04-06
2021-01-0343
Nissan’s variable compression turbo (VC-Turbo) engine has a multilink mechanism that continuously adjusts the top and bottom dead centers of the piston to change the compression ratio and achieve both fuel economy and high power performance. Increasing the exhaust gas recirculation (EGR) rate is an effective way to further reduce the fuel consumption, although this increases the exhaust gas condensation in the cylinder bores, causing a more corrosive environment. When the EGR rate is increased in a VC-Turbo engine, the combined effect of piston sliding and exhaust gas condensation at the top dead center accelerates the corrosive wear of the thermal spray coating. Stainless steel coating is used to improve the corrosion resistance, but the adhesion strength between the coating and the cylinder bores is reduced.
Technical Paper

In-cylinder flow design based on the representative scales of turbulence and premixed combustion

2019-12-19
2019-01-2210
Dilution combustion with exhaust gas recirculation (EGR) has been applied for the improvement of thermal efficiency. In order to stabilize the high diluted combustion, it is important to form an appropriate turbulence in the combustion cylinder. Turbulent intensity needs to be strengthened to increase the combustion speed, while too strong turbulence causes ignition instability. In this study, the factor of combustion instability under high diluted conditions was analyzed by using single cylinder engine test, optical engine test and 3D CFD simulation. Finally, methodology of in-cylinder flow design is attempted to build without any function by taking into account the representative scales of turbulence and premixed combustion.
Technical Paper

New CO2 / Fuel Consumption Certification Cycles and Design Implications for Fuel Efficient Lubricants

2019-12-19
2019-01-2367
During this decade, the constant increase and globalization of passenger car sales has led countries to adopt a common language for the treatment of CO2 and other pollutant emissions. In this regard, the WLTC - World-wide harmonized Light duty Test Cycle - stands as the new global reference cycle for fuel consumption, CO2 and pollutant emissions across the globe. Regulations keep a constant pressure on CO2 emission reduction leading vehicle manufacturers and component suppliers to modify hardware to ensure compliance. Within this balance, lubricants remain worthwhile contributors to lowering CO2 emission and fuel consumption. Yet with WTLC, new additional lubricant designs are likely to be required to ensure optimized friction due to its new cycle operating conditions, associated powertrain hardware and worldwide product use.
Technical Paper

Study of the Effects of Oil Supply and Piston Skirt Profile on Lubrication Performance in Power Cylinder Systems

2019-12-19
2019-01-2364
In internal combustion engines, the majority of the friction loss associated with the piston takes place on the thrust side in early expansion stroke. Research has shown that the Friction Mean Effective Pressure (FMEP) of the engine can be reduced if proper modifications to the piston skirt, which is traditionally barrel-shaped, are made. In this research, an existing model was applied for the first time to study the effects of different oil supply strategies for the piston assembly. The model is capable of tracking lubricating oil with the consideration of oil film separation from full film to partial film. It is then used to analyze how the optimized piston skirt profile investigated in a previous study reduces friction.
Journal Article

A Study of Particulate Emission Formation Mechanism from Injector Tip in Direct-Injection Gasoline Engines

2019-12-19
2019-01-2244
The mechanism causing in-cylinder injector tip soot formation, which is the main source of particle number (PN) emissions under operating conditions after engine warm-up, was analyzed in this study. The results made clear a key parameter for reducing injector tip soot PN emissions. An evaluation of PN emissions for different amounts of injector tip wetting revealed that an injector with larger tip wetting forms higher PN emissions. The results also clarified that the amount of deposits does not have much impact on PN emissions. The key parameter for reducing injector tip soot is injector tip wetting that has a linear relationship with injector tip soot PN emissions.
Journal Article

Low Friction and Low Viscosity Final Drive Oil

2019-12-19
2019-01-2336
The new lubricant was newly developed for differential gear unit to contribute to all friction factors/conditions (Boundary, Hydrodynamic & those Mixed Lubrication) even if the differential gear is operating under very severe conditions such as high-gear-contact pressure and highly sliding speed. The main concept of development was selecting and formulating the optimized additives for severe lubrication conditions in order to achieve the best balance between thinner-film thickness and extreme pressure performance. In conclusion, by the application of both synthetic base oil instead of mineral one and activation technology of MoDTC in spite of ZnDTP free formulation, it is finally realized to reduce the torque of final drive unit by 40% and it can be estimated the 0.5% of CO2 reduction in actual vehicles.
Technical Paper

Direct Measurement of Aftertreatment System Stored Water Levels for Improved Dew Point Management Using Radio Frequency Sensing

2019-04-02
2019-01-0739
Reducing cold-start emissions to meet increasingly stringent emissions limits requires fast activation of exhaust system sensors and aftertreatment control strategies. One factor delaying the activation time of current exhaust sensors, such as NOx and particulate matter (PM) sensors, is the need to protect these sensors from water present in the exhaust system. Exposure of the ceramic sensing element to water droplets can lead to thermal shock and failure of the sensor. In order to prevent such failures, various algorithms are employed to estimate the dew point of the exhaust gas and determine when the exhaust system is sufficiently dry to enable safe sensor operation. In contrast to these indirect, model-based approaches, this study utilized radio frequency (RF) sensors typically applied to monitor soot loading levels in diesel and gasoline particulate filters, to provide a direct measurement of stored water levels on the ceramic filter elements themselves.
Technical Paper

Phenomenological Investigations of Mid-Channel Ash Deposit Formation and Characteristics in Diesel Particulate Filters

2019-04-02
2019-01-0973
Accumulation of lubricant and fuel derived ash in the diesel particulate filter (DPF) during vehicle operation results in a significant increase of pressure drop across the after-treatment system leading to loss of fuel economy and reduced soot storage capacity over time. Under certain operating conditions, the accumulated ash and/or soot cake layer can collapse resulting in ash deposits upstream from the typical ash plug section, henceforth termed mid-channel ash deposits. In addition, ash particles can bond (either physically or chemically) with neighboring particles resulting in formation of bridges across the channels that effectively block access to the remainder of the channel for the incoming exhaust gas stream. This phenomenon creates serious long-term durability issues for the DPF, which often must be replaced. Mid-channel deposits and ash bridges are extremely difficult to remove from the channels as they often sinter to the substrate.
Technical Paper

Experiments and Analyses on Stability/Mid-Channel Collapse of Ash-Deposit Wall Layers and Pre-Mature Clogging of Diesel Particulate Filters

2019-04-02
2019-01-0972
The conventional concept of soot and ash wall deposits (i.e. cake-layers) gradually building up along the channels of a ceramic honeycomb and then periodically or continuously being swept downstream toward the end-plugs of the channels may not always occur in practice. When deposits irregularly form on or detach from the walls, causing premature clogging usually around the mid-sections of the channels (also known as Mid-Channel Collapse), and the particulate filter is prone to experiencing significantly elevated back pressure, resulting in the need for earlier repair or replacement than desired. Here we describe related experiments that were performed, accompanied by analysis and simulation, in order to investigate the factors that contribute to the patterns of wall deposits that form-particularly of ash-and the effects of these irregular patterns.
Technical Paper

Evaluation of Equivalent Temperature in a Vehicle Cabin with a Numerical Thermal Manikin (Part 2): Evaluation of Thermal Environment and Equivalent Temperature in a Vehicle Cabin

2019-04-02
2019-01-0698
In the previous paper (Part 1), measurements of equivalent temperature (teq) using a clothed thermal manikin and modeling of the clothed thermal manikin for teq simulation were discussed. In this paper (Part 2), the outline of the proposed mesh-free simulation method is described and comparisons between teq in the calculations and measurements under summer cooling with solar radiation and winter heating without solar radiation conditions in a vehicle cabin are discussed. The key factors for evaluating teq on each body segment of the clothed thermal manikin under cooling and heating conditions are also discussed. In the mesh-free simulation, even if there is a hole or an unnecessary shape on the CAD model, only a group of points whose density is controlled in the simulation area is generated without modifying the CAD model. Therefore, the fluid mesh required by conventional CFD code is not required, and the analysis load is significantly reduced.
Technical Paper

Evaluation of Equivalent Temperature in a Vehicle Cabin with a Numerical Thermal Manikin (Part 1): Measurement of Equivalent Temperature in a Vehicle Cabin and Development of a Numerical Thermal Manikin

2019-04-02
2019-01-0697
The present paper is Part 1 of two consecutive studies. Part 1 describes three subjects: definition of the equivalent temperature (teq), measurements of teq using a clothed thermal manikin in a vehicle cabin, and modeling of the clothed thermal manikin for teq simulation. After defining teq, a method for measuring teq with a clothed thermal manikin was examined. Two techniques were proposed in this study: the definition of “the total heat transfer coefficient between the skin surface and the environment in a standard environment (hcal)” based on the thermal insulation of clothing (Icl), and a method of measuring Icl in consideration of the area factor (fcl), which indicates the ratio of the clothing surface to the manikin surface area. Then, teq was measured in an actual vehicle cabin by the proposed method under two conditions: a summer cooling condition with solar radiation and a winter heating condition without solar radiation.
Technical Paper

Flex Fuel Gasoline-Alcohol Engine for Near Zero Emissions Plug-In Hybrid Long-Haul Trucks

2019-04-02
2019-01-0565
Internal combustion engines for plug-in hybrid heavy duty trucks, especially long haul trucks, could play an important role in facilitating use of battery power. Power from a low carbon electricity source could thereby be employed without an unattractive vehicle cost increase or range limitation. The ideal engine should be powered by a widely available affordable liquid fuel, should minimize air pollutant emissions, and should provide lower greenhouse gas emissions. Diesel engines could fall short in meeting these objectives, especially because of high emissions. In this paper we analyze the potential for a flex fuel gasoline-alcohol engine approach for a series hybrid powertrain. In this approach the engine would provide comparable (or possibly greater) efficiency than a diesel engine while also providing 90 around lower NOx emissions than present cleanest diesel engine vehicles. Ethanol or methanol would be employed to increase knock resistance.
Technical Paper

Validation of Wireless Power Transfer up to 11kW Based on SAE J2954 with Bench and Vehicle Testing

2019-04-02
2019-01-0868
Wireless Power Transfer (WPT) promises automated and highly efficient charging of electric and plug-in-hybrid vehicles. As commercial development proceeds forward, the technical challenges of efficiency, interoperability, interference and safety are a primary focus for this industry. The SAE Vehicle Wireless Power and Alignment Taskforce published the Recommended Practice J2954 to help harmonize the first phase of high-power WPT technology development. SAE J2954 uses a performance-based approach to standardizing WPT by specifying ground and vehicle assembly coils to be used in a test stand (per Z-class) to validate performance, interoperability and safety. The main goal of this SAE J2954 bench testing campaign was to prove interoperability between WPT systems utilizing different coil magnetic topologies. This type of testing had not been done before on such a scale with real automaker and supplier systems.
Journal Article

Modeling of Oil Transport between Piston Skirt and Cylinder Liner in Internal Combustion Engines

2019-04-02
2019-01-0590
The distribution of lubricating oil plays a critical role in determining the friction between piston skirt and cylinder liner, which is one of the major contributors to the total friction loss in internal combustion engines. In this work, based upon the experimental observation an existing model for the piston secondary motion and skirt lubrication was improved with a physics-based model describing the oil film separation from full film to partial film. Then the model was applied to a modern turbo-charged SI engine. The piston-skirt FMEP predicted by the model decreased with larger installation clearance, which was also observed from the measurements using IMEP method at the rated. It was found that the main period of the cycle exhibiting friction reduction is in the expansion stroke when the skirt only contacts the thrust side for all tested installation clearances.
X