Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Study of Position Sensorless Control to Generator for 100% Electric-Drive Hybrid Vehicles

2023-09-29
2023-32-0178
There are two primary technical issues in the application of position sensorless control to generators for 100% electric-drive hybrid vehicles. The first is the risk of losing control when position sensorless estimation methods are changed in accordance with the generator speed, while. The second is the reduction in the maximum torque if the rate of change in the generator speed is extremely large in a relatively low-rotation-speed area. This study proposes countermeasures for each issue and their effects examines them via simulations and experiments.
Technical Paper

Evaluation of Equivalent Temperature Using Thermal Factors : Validation of a Calculation Method Based on ISO 14505-4:2021 in a Vehicle Cabin

2022-03-29
2022-01-0190
This paper describes a method for evaluating the equivalent temperature in vehicle cabins based on the new international standard ISO 14505-4, published in 2021. ISO 14505-4 defines two simulation methods to determine a thermal comfort index “equivalent temperature.” One method uses a numerical thermal manikin, and the other uses thermal factors to calculate. This study discusses the latter method to validate its accuracy, identify the key points to consider, and examine its advantages and disadvantages. First, the definition of equivalent temperature and the equation to calculate the equivalent temperature using thermal factors, such as air temperature, radiant temperature, solar radiation, and air velocity, are explained. In addition, the experiments and simulation methods are described.
Technical Paper

Reliable Processes of Simulating Liner Roughness and Its Lubrication Properties

2019-04-02
2019-01-0178
Topology of liner finish is critical to the performance of internal combustion engines. Proper liner finish simulation processes lead to efficient engine design and research. Fourier methods have been well studied to numerically generate liner topology. However, three major issues wait to be addressed to make the generation processes feasible and reliable. First, in order to simulate real plateau honed liners, approaches should be developed to calculate accurate liner geometric parameters. These parameters are served as the input of the generation algorithm. Material ratio curve, the common geometry calculation method, should be modified so that accurate root mean square of plateau height distribution could be obtained. Second, the set of geometric parameters used in generating liner finish (ISO 13565-2) is different from the set of parameters used in manufacturing industry (ISO 13565-3). Quantitative relations between these two sets should be studied.
Technical Paper

Failure Prediction for Robot Reducers by Combining Two Machine Learning Methods

2019-04-02
2019-01-0508
There are many production robots used at car manufacturing plants, and each of them is fitted with several reducers. A breakdown of one of these reducers may cause a huge loss due to the stoppage of all production lines. Therefore, condition-based maintenance is currently being used to predict failures by predetermined thresholds for average and standard deviations. However, this method can cause many false alarms or some false negatives. There are some ways of suppressing false alarms, such as detecting a change in the probability density function. However, when false alarms are suppressed using the probability density function in the operational range, some false negatives may occur, leading to a breakdown of a reducer and huge loss. A false negative is caused by overlooking an anomaly with slight changes and it is difficult to detect using only the probability density function.
Technical Paper

Evaluation of Equivalent Temperature in a Vehicle Cabin with a Numerical Thermal Manikin (Part 1): Measurement of Equivalent Temperature in a Vehicle Cabin and Development of a Numerical Thermal Manikin

2019-04-02
2019-01-0697
The present paper is Part 1 of two consecutive studies. Part 1 describes three subjects: definition of the equivalent temperature (teq), measurements of teq using a clothed thermal manikin in a vehicle cabin, and modeling of the clothed thermal manikin for teq simulation. After defining teq, a method for measuring teq with a clothed thermal manikin was examined. Two techniques were proposed in this study: the definition of “the total heat transfer coefficient between the skin surface and the environment in a standard environment (hcal)” based on the thermal insulation of clothing (Icl), and a method of measuring Icl in consideration of the area factor (fcl), which indicates the ratio of the clothing surface to the manikin surface area. Then, teq was measured in an actual vehicle cabin by the proposed method under two conditions: a summer cooling condition with solar radiation and a winter heating condition without solar radiation.
Technical Paper

Validation of Wireless Power Transfer up to 11kW Based on SAE J2954 with Bench and Vehicle Testing

2019-04-02
2019-01-0868
Wireless Power Transfer (WPT) promises automated and highly efficient charging of electric and plug-in-hybrid vehicles. As commercial development proceeds forward, the technical challenges of efficiency, interoperability, interference and safety are a primary focus for this industry. The SAE Vehicle Wireless Power and Alignment Taskforce published the Recommended Practice J2954 to help harmonize the first phase of high-power WPT technology development. SAE J2954 uses a performance-based approach to standardizing WPT by specifying ground and vehicle assembly coils to be used in a test stand (per Z-class) to validate performance, interoperability and safety. The main goal of this SAE J2954 bench testing campaign was to prove interoperability between WPT systems utilizing different coil magnetic topologies. This type of testing had not been done before on such a scale with real automaker and supplier systems.
Technical Paper

Evaluation of an Open-grill Vehicle Aerodynamics Simulation Method Considering Dirty CAD Geometries

2018-04-03
2018-01-0733
In open-grille vehicle aerodynamics simulation using computational fluid dynamics, in addition to basic flow characteristics, such as turbulent flow with a Reynolds number of several million on the bluff body, it is important to accurately estimate the cooling air flow introduced from the front opening. It is therefore necessary to reproduce the detailed geometry of the entire vehicle including the engine bay as precisely as possible. However, there is a problem of generating a good-quality calculation grid with a small workload. It usually takes several days to a week for the pretreatment process to make the geometry data ‘clean’ or ‘watertight’. The authors proposed a computational method for complex geometries with a hierarchical Cartesian grid and a topology-independent immersed boundary method with dummy cells that discretize the geometry on a cell-by-cell basis and can set an imaginary point arbitrarily.
Technical Paper

Curved Beam Based Model for Piston-Ring Designs in Internal Combustion Engines: Working Engine Conditions Study

2018-04-03
2018-01-1277
A new multi-scale curved beam based model was developed for piston-ring designs. This tool is able to characterize the behavior of a ring with any cross section design. This paper describes the conformability and ring static twist calculation. The conformability part model the static behavior of the ring in working engine conditions. The model employs the computation scheme that separates the meshing of the structure and local force generation. Additional to the conventional static ring-bore conformability analysis, the conformability model is designed to examine ring-bore and ring-groove interactions in a running engine under varying driving forces and localized lubrication conditions. We made Improvements on the way to handle the effects of the radial temperature gradient compared to the existing models. Examples are given on the effects of ring rotation on the interaction of the ring and a distorted bore as well as the change of local lubrication conditions.
Technical Paper

Curved Beam Based Model for Piston-Ring Designs in Internal Combustion Engines: Closed Shape Within a Flexible Band, Free-Shape and Force in Circular Bore Study

2018-04-03
2018-01-1279
A new multi-scale curved beam based model was developed for piston-ring designs. This paper describes the free-shape, force in circular bore and closed shape within a flexible band (ovality) related parts. Knowing any one of these distributions, this model determines the other two. This tool is useful in the sense that the characterization of the ring is carried out by measuring its closed shape within a flexible band which is more accurate than measuring its free shape or force distribution in circular bore. Thus, having a model that takes the closed shape within a flexible band as an input is more convenient and useful based on the experiments carried out to characterize the ring.
Journal Article

Development and Application of Ring-Pack Model Integrating Global and Local Processes. Part 1: Gas Pressure and Dynamic Behavior of Piston Ring Pack

2017-03-28
2017-01-1043
A new ring pack model has been developed based on the curved beam finite element method. This paper describes the first part of this model: simulating gas pressure in different regions above piston skirt and ring dynamic behavior of two compression rings and a twin-land oil control ring. The model allows separate grid divisions to resolve ring structure dynamics, local force/pressure generation, and gas pressure distribution. Doing so enables the model to capture both global and local processes at their proper length scales. The effects of bore distortion, piston secondary motion, and groove distortion are considered. Gas flows, gas pressure distribution in the ring pack, and ring structural dynamics are coupled with ring-groove and ring-liner interactions, and an implicit scheme is employed to ensure numerical stability. The model is applied to a passenger car engine to demonstrate its ability to predict global and local effects on ring dynamics and oil transport.
Technical Paper

A Framework for Robust Driver Gaze Classification

2016-04-05
2016-01-1426
The challenge of developing a robust, real-time driver gaze classification system is that it has to handle difficult edge cases that arise in real-world driving conditions: extreme lighting variations, eyeglass reflections, sunglasses and other occlusions. We propose a single-camera end-toend framework for classifying driver gaze into a discrete set of regions. This framework includes data collection, semi-automated annotation, offline classifier training, and an online real-time image processing pipeline that classifies the gaze region of the driver. We evaluate an implementation of each component on various subsets of a large onroad dataset. The key insight of our work is that robust driver gaze classification in real-world conditions is best approached by leveraging the power of supervised learning to generalize over the edge cases present in large annotated on-road datasets.
Technical Paper

The Anatomy of Knock

2016-04-05
2016-01-0704
The combustion process after auto-ignition is investigated. Depending on the non-uniformity of the end gas, auto-ignition could initiate a flame, produce pressure waves that excite the engine structure (acoustic knock), or result in detonation (normal or developing). For the “acoustic knock” mode, a knock intensity (KI) is defined as the pressure oscillation amplitude. The KI values over different cycles under a fixed operating condition are observed to have a log-normal distribution. When the operating condition is changed (over different values of λ, EGR, and spark timing), the mean (μ) of log (KI/GIMEP) decreases linearly with the correlation-based ignition delay calculated using the knock-point end gas condition of the mean cycle. The standard deviation σ of log(KI/GIMEP) is approximately a constant, at 0.63. The values of μ and σ thus allow a statistical description of knock from the deterministic calculation of the ignition delay using the mean cycle properties
Technical Paper

Improvement of Practical Electric Consumption by Drag Reducing under Cross Wind

2016-04-05
2016-01-1626
Reducing vehicle fuel consumption has become one of the most important issues in recent years in connection with environmental concerns such as global warming. Therefore, in the vehicle development process, attention has been focused on reducing aerodynamic drag as a way of improving fuel economy. When considering environmental issues, the development of vehicle aerodynamics must take into account real-world driving conditions. A crosswind is one of the representative conditions. It is well known that drag changes in a crosswind compared with a condition without a crosswind, and that the change depends on the vehicle shape. It is generally considered that the influence of a crosswind is relatively small since drag accounts for a small proportion of the total running resistance. However, for electric vehicles, the energy loss of the drive train is smaller than that of an internal combustion engine (ICE) vehicle.
Journal Article

Development of Hardware-In-the-Loop Simulation System for Steering Evaluation Using Multibody Kinematic Analysis

2014-04-01
2014-01-0086
The adoption of the electronic controlled steering systems with new technologies has been extended in recent years. They have interactions with other complex vehicle subsystems and it is a hard task for the vehicle developer to find the best solution from huge number of the combination of parameter settings with track tests. In order to improve the efficiency of the steering system development, the authors had developed a steering bench test method for steering system using a Hardware-In-the-Loop Simulation (HILS). In the steering HILS system, vehicle dynamics simulation and the tie rod axial force calculation are required at the same time in the real-time simulation environment. The accuracy of the tie rod axial force calculation is one of the key factors to reproduce the vehicle driving condition. But the calculation cannot be realized by a commercial software for the vehicle dynamics simulation.
Journal Article

Verification of Flag Usage Patterns by Static Analysis Techniques

2014-04-01
2014-01-0180
A flag is a global boolean variable used to achieve synchronization between various tasks of an embedded system. An application implementing flags performs actions or events based on the value of the flags. If flag variables are not implemented properly, certain synchronization related issues can arise which can lead to unexpected behavior or failure of the underlying system. In this paper, we present an automated verification technique to identify and verify flag usage patterns at an early stage of code development. We propose a two-step approach which consists of: a. identification of all potential flag variables and b. verification of flag usage patterns against predefined set of rules. The results of our experiment demonstrate that the proposed approach reduces the cost and complexity of the flag review process by almost 70%.
Technical Paper

Development of Regenerative Cooperative Braking System with Conventional ESC

2014-04-01
2014-01-0331
HEV and EV markets are in a rapid expansion tendency. Development of low-cost regenerative cooperation brake system is needed in order to respond to the consumers needs for HEV and EV. Regenerative cooperation brake system which HEV and EV are generally equipped with has stroke simulator. We developed simple composition brake system based on the conventional ESC unit without the stroke simulator, and our system realized a low-cost regenerative cooperation brake. The key technologies are the quiet pressurization control which can be used in the service application, which is to make brake force depending on brake travel, by gear pump and the master cylinder with idle stroke to realize regenerative cooperation brake. Thanks to the key technologies, both the high regenerative efficiency and the good service brake feeling were achieved.
Technical Paper

Development of a SIL, HIL and Vehicle Test-Bench for Model-Based Design and Validation of Hybrid Powertrain Control Strategies

2014-04-01
2014-01-1906
Hybrid powertrains with multiple sources of power have generated new control challenges in the automotive industry. Purdue University's participation in EcoCAR 2, an Advanced Vehicle Technology Competition managed by the Argonne National Laboratories and sponsored by GM and DOE, has provided an exciting opportunity to create a comprehensive test-bench for the development and validation of advanced hybrid powertrain control strategies. As one of 15 competing university teams, the Purdue EcoMakers are re-engineering a donated 2013 Chevrolet Malibu into a plug-in parallel- through-the-road hybrid-electric vehicle, to reduce its environmental impact without compromising performance, safety or consumer acceptability. This paper describes the Purdue team's control development process for the EcoCAR 2 competition.
Technical Paper

Prediction and Analysis Technology Development for Impact Noise

2014-04-01
2014-01-0895
In order to enhance product attraction, it is important to reduce the impact noise when a vehicle go over bumps such as bridge joints. Vehicle performance to transitional noise phenomena is not yet analyzed well. In this paper, a prediction method is established by vector composition and inverse Fourier transform with the combination of Multibody Dynamics (MBD) and FEM. Also, a root cause analysis method is established with the following three mechanism analysis methods; transfer path analysis, mode contribution analysis, and panel contribution analysis.
Journal Article

Experimental Method Extracting Dominant Acoustic Mode Shapes for Automotive Interior Acoustic Field Coupled with the Body Structure

2013-05-13
2013-01-1905
For a numerical model of vibro-acoustic coupling analysis, such as a vehicle noise and vibration, both structural and acoustical dynamic characteristics are necessary to replicate the physical phenomenon. The accuracy of the analysis is not enough for substituting a prototype phase with a digital phase in the product development phases. One of the reasons is the difficulty of addressing the interior acoustical characteristics due to the complexity of the acoustical transfer paths, which are a duct and a small hole of trim parts in a vehicle. Those complex features affect on the nodal locations and the body coupling surface of acoustic mode shapes. In order to improve the accuracy of the analysis, the physical mechanisms of those features need to be extracted from experimental testing.
Journal Article

An Assessment of the Rare Earth Element Content of Conventional and Electric Vehicles

2012-04-16
2012-01-1061
Rare earths are a group of elements whose availability has been of concern due to monopolistic supply conditions and environmentally unsustainable mining practices. To evaluate the risks of rare earths availability to automakers, a first step is to determine raw material content and value in vehicles. This task is challenging because rare earth elements are used in small quantities, in a large number of components, and by suppliers far upstream in the supply chain. For this work, data on rare earth content reported by vehicle parts suppliers was assessed to estimate the rare earth usage of a typical conventional gasoline engine midsize sedan and a full hybrid sedan. Parts were selected from a large set of reported parts to build a hypothetical typical mid-size sedan. Estimates of rare earth content for vehicles with alternative powertrain and battery technologies were made based on the available parts' data.
X