Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Optimization of the IC Engine Piston Skirt Design Via Neural Network Surrogate and Genetic Algorithms

2024-04-09
2024-01-2603
Internal combustion (IC) engines still power most of the vehicles on road and will likely to remain so in the near future, especially for heavy duty applications in which electrification is typically more challenging. Therefore, continued improvements on IC engines in terms of efficiency and longevity are necessary for a more sustainable transportation sector. Two important design objectives for heavy duty engines with wet liners are to reduce friction loss and to lower the risks of cavitation damages, both of which can be greatly influenced by the piston-liner clearance and the design of the piston skirt. However, engine design optimization is difficult due to the nonlinear interactions between the key design variables and the design objectives, as well as the multi-physics and multi-scale nature of the mechanisms that are relevant to the design objectives.
Technical Paper

On Road vs. Off Road Low Load Cycle Comparison

2024-04-09
2024-01-2134
Reducing criteria pollutants while reducing greenhouse gases is an active area of research for commercial on-road vehicles as well as for off-road machines. The heavy duty on-road sector has moved to reducing NOx by 82.5% compared to 2010 regulations while increasing the engine useful life from 435,000 to 650,000 miles by 2027 in the United States (US). An additional certification cycle, the Low Load Cycle (LLC), has been added focusing on part load operation having tight NOx emissions levels. In addition to NOx, the total CO2 emissions from the vehicle will also be reduced for various model years. The off-road market is following with a 90% NOx reduction target compared to Tier 4 Final for 130-560 kW engines along with greenhouse gas targets that are still being established. The off-road market will also need to certify with a Low Load Application Cycle (LLAC), a version of which was proposed for evaluation in 2021.
Technical Paper

Analysis of Real-World Preignition Data Using Neural Networks

2023-10-31
2023-01-1614
1Increasing adoption of downsized, boosted, spark-ignition engines has improved vehicle fuel economy, and continued improvement is desirable to reduce carbon emissions in the near-term. However, this strategy is limited by damaging preignition events which can cause hardware failure. Research to date has shed light on various contributing factors related to fuel and lubricant properties as well as calibration strategies, but the causal factors behind an individual preignition cycle remain elusive. If actionable precursors could be identified, mitigation through active control strategies would be possible. This paper uses artificial neural networks to search for identifiable precursors in the cylinder pressure data from a large real-world data set containing many preignition cycles. It is found that while follow-up preignition cycles in clusters can be readily predicted, the initial preignition cycle is not predictable based on features of the cylinder pressure.
Technical Paper

Engine Operating Conditions, Fuel Property Effects, and Associated Fuel–Wall Interaction Dependencies of Stochastic Preignition

2023-10-31
2023-01-1615
This work for the Coordinating Research Council (CRC) explores dependencies on the opportunity for fuel to impinge on internal engine surfaces (i.e., fuel–wall impingement) as a function of fuel properties and engine operating conditions and correlates these data with measurements of stochastic preignition (SPI) propensity. SPI rates are directly coupled with laser–induced florescence measurements of dye-doped fuel dilution measurements of the engine lubricant, which provides a surrogate for fuel–wall impingement. Literature suggests that SPI may have several dependencies, one being fuel–wall impingement. However, it remains unknown if fuel-wall impingement is a fundamental predictor and source of SPI or is simply a causational factor of SPI. In this study, these relationships on SPI and fuel-wall impingement are explored using 4 fuels at 8 operating conditions per fuel, for 32 total test points.
Technical Paper

Effect of Wet Liner Vibration on Ring-liner Interaction in Heavy-duty Engines

2023-09-29
2023-32-0140
Lubricating oil consumption (LOC) is a direct source of hydrocarbon and particulate emissions from internal combustion engines. LOC also inhibits the lifetime of exhaust aftertreatment system components, preventing their ability to effectively filter out other harmful emissions. Due to its influence on piston ring- bore conformability, bore distortion is arguably the most critical parameter for engine designers to consider in prevention of LOC. Bore distortion also has a significant influence on the contact forces between the piston ring and cylinder wall, which determine the wear rate of the ring and cylinder wall and can cause durability issues. Two drivers of bore distortion: thermal expansion and head bolt stresses, are routinely considered in conformability and contact analyses. Separately, bore distortion/vibration due to piston impact and combustion/cylinder pressures has been previously analyzed in wet liner engines for coolant cavitation and noise considerations.
Technical Paper

Modeling of piston pin rotation in a large bore gas engine

2023-09-29
2023-32-0161
In an engine system, the piston pin is subjected to high loading and severe lubrication conditions, and pin seizures still occur during new engine development. A better understanding of the lubricating oil behavior and the dynamics of the piston pin could lead to cost- effective solutions to mitigate these problems. However, research in this area is still limited due to the complexity of the lubrication and the pin dynamics. In this work, a numerical model that considers structure deformation and oil cavitation was developed to investigate the lubrication and dynamics of the piston pin. The model combines multi-body dynamics and elasto-hydrodynamic lubrication. A routine was established for generating and processing compliance matrices and further optimized to reduce computation time and improve the convergence of the equations. A simple built-in wear model was used to modify the pin bore and small end profiles based on the asperity contact pressures.
Technical Paper

An Investigation of Oil Supply Mechanisms to the Top of the Liner in Internal Combustion Engines

2023-09-29
2023-32-0031
Protecting the piston ring and liner interface is critical to the proper operation of internal combustion engines. Specifically, the dry region, which is the portion of the liner above the Top Dead Center (TDC) of the Oil Control Ring (OCR), needs proper lubrication to reduce wear and to maintain sustainability. However, the mechanisms by which oil is distributed to such region have not been investigated. This paper presents the first attempt to understand dry region lubrication by means of the oil-gas interaction below the top ring gap through a combination of experimental and modeling approaches. An optical engine with 2D Laser Induced Fluorescence (2D-LIF) technique was applied to visualize the oil flow below the top ring gap. It was observed that the two vortices downstream the top ring gap can cause oil bridging towards the liner, providing lubrication to the ring-liner interface.
Technical Paper

Effect of Split-Injection Strategies on Engine Performance and Emissions under Cold-Start Operation

2023-04-11
2023-01-0236
The recently concluded partnership for advancing combustion engines (PACE) was a US Department of Energy consortium involving multiple national laboratories focused on addressing key efficiency and emission barriers in light-duty engines. Generation of detailed experimental data and modeling capabilities to understand and predict cold-start behavior was a major pillar in this program. Cold-start, as defined by the time between first engine crank and three-way catalyst light-off, is responsible for a large percentage of NOx, unburned hydrocarbon, and particulate matter emissions in light-duty engines. Minimizing emissions during cold-start is a trade-off between achieving faster three-way catalyst light-off, and engine out emissions during that period. In this study, engine performance, emissions, and catalyst warmup potential were monitored while the engine was operated using a single direct injection (baseline case) as well as a two-way-equal-split direct injection strategy.
Technical Paper

Predictive Piston Cylinder Unit Simulation - Part II: Novel Methodology of Friction Simulation Validation Utilizing Floating-Liner Measurements

2023-04-11
2023-01-0415
The increasing demand for environmentally friendly and fuel-efficient transportation and power generation requires further optimization and minimization of friction power losses. With up to 50% of the overall friction, the piston cylinder unit (PCU) shows most potential within the internal combustion engine (ICE) to increase mechanical efficiency. Calculating friction of internal combustion engines, especially the friction contribution from piston rings and skirt, requires detailed knowledge of the dynamics and lubrication regime of the components being in contact. Part I of this research presents a successful match of simulated and measured piston inter-ring pressures at numerous operation points [1] and constitutes the starting point for the comparison of simulated and measured piston group friction forces as presented in this research.
Technical Paper

Auto Stop-Start Fuel Consumption Benefits

2023-04-11
2023-01-0346
With increasingly stringent regulations mandating the improvement of vehicle fuel economy, automotive manufacturers face growing pressure to develop and implement technologies that improve overall system efficiency. One such technology is an automatic (auto) stop-start feature. Auto stop-start reduces idle time and reduces fuel use by temporarily shutting the engine off when the vehicle comes to a stop and automatically re-starting it when the brake is released, or the accelerator is pressed. As mandated by the U.S. Congress, the U.S. Environmental Protection Agency (EPA) is required to keep the public informed about fuel saving practices. This is done, in partnership with the U.S. Department of Energy (DOE), through the fueleconomy.gov website. The “Fuel-Saving Technologies” and “Gas Mileage Tips” sections of the website are focused on helping the public make informed purchasing decisions and encouraging fuel-saving driving habits.
Journal Article

Development of a Supercharged Octane Number and a Supercharged Octane Index

2023-04-11
2023-01-0251
Gasoline knock resistance is characterized by the Research and Motor Octane Number (RON and MON), which are rated on the CFR octane rating engine at naturally aspirated conditions. However, modern automotive downsized boosted spark ignition (SI) engines generally operate at higher cylinder pressures and lower temperatures relative to the RON and MON tests. Using the naturally aspirated RON and MON ratings, the octane index (OI) characterizes the knock resistance of gasolines under boosted operation by linearly extrapolating into boosted “beyond RON” conditions via RON, MON, and a linear regression K factor. Using OI solely based on naturally aspirated RON and MON tests to extrapolate into boosted conditions can lead to significant errors in predicting boosted knock resistance between gasolines due to non-linear changes in autoignition and knocking characteristics with increasing pressure conditions.
Technical Paper

Evaluating Class 6 Delivery Truck Fuel Economy and Emissions Using Vehicle System Simulations for Conventional and Hybrid Powertrains and Co-Optima Fuel Blends

2022-09-13
2022-01-1156
The US Department of Energy’s Co-Optimization of Engine and Fuels Initiative (Co-Optima) investigated how unique properties of bio-blendstocks considered within Co-Optima help address emissions challenges with mixing controlled compression ignition (i.e., conventional diesel combustion) and enable advanced compression ignition modes suitable for implementation in a diesel engine. Additionally, the potential synergies of these Co-Optima technologies in hybrid vehicle applications in the medium- and heavy-duty sector was also investigated. In this work, vehicles system were simulated using the Autonomie software tool for quantifying the benefits of Co-Optima engine technologies for medium-duty trucks. A Class 6 delivery truck with a 6.7 L diesel engine was used for simulations over representative real-world and certification drive cycles with four different powertrains to investigate fuel economy, criteria emissions, and performance.
Technical Paper

Benefits of Octane-On-Demand in an E10-Gasoline Engine Vehicle Using an On-Board Fuel Separator

2022-03-29
2022-01-0424
Knock in gasoline engines at higher loads is a significant constraint on torque and efficiency. The anti-knock property of a fuel is closely related to its research octane number (RON). Ethanol has superior RON compared to gasoline and thus has been commonly used to blend with gasoline in commercial gasolines. However, as the RON of a fuel is constant, it has not been used as needed in a vehicle. To wisely use the RON, an On-Board Separation (OBS) unit that separates commercial gasoline with ethanol content into high-octane fuel with high ethanol fraction and a lower octane remainder has been developed. Then an onboard Octane-on-demand (OOD) concept uses both fuels in varying proportion to provide to the engine a fuel blend with just enough RON to meet the ever changing octane requirement that depends on driving pattern.
Technical Paper

Advanced Finite-Volume Numerics and Source Term Assumptions for Kernel and G-Equation Modelling of Propane/Air Flames

2022-03-29
2022-01-0406
G-Equation models represent propagating flame fronts with an implicit two-dimensional surface representation (level-set). Level-set methods are fast, as transport source terms for the implicit surface can be solved with finite-volume operators on the finite-volume domain, without having to build the actual surface. However, they include approximations whose practical effects are not properly understood. In this study, we improved the numerics of the FRESCO CFD code’s G-Equation solver and developed a new method to simulate kernel growth using signed distance functions and the analytical sphere-mesh overlap. We analyzed their role for simulating propane/air flames, using three well-established constant-volume configurations: a one-dimensional, freely propagating laminar flame; a disc-shaped, constant-volume swirl combustor; and torch-jet flame development through an orifice from a two-chamber device.
Technical Paper

The Mechanism of Spur Gear Tooth Profile Deformation Due to Interference-Fit Assembly and the Resultant Effects on Transmission Error, Bending Stress, and Tip Diameter and Its Sensitivity to Gear Geometry

2022-03-29
2022-01-0608
Gear profile deviation is the difference in gear tooth profile from the ideal involute geometry. There are many causes that result in the deviation. Deflection under load, manufacturing, and thermal effects are some of the well-known causes that have been reported to cause deviation of the gear tooth profile. The profile deviation caused by gear tooth profile deformation due to interference-fit assembly has not been discussed previously. Engine timing gear trains, transmission gearboxes, and wind turbine gearboxes are known to use interference-fit to attach the gear to the rotating shaft. This paper discusses the interference-fit joint design and the mechanism of tooth profile deformation due to the interference-fit assembly in gear trains. A new analytical method to calculate the profile slope deviation change due to interference-assembly of parallel axis spur gears is presented.
Journal Article

Evaluation of High-Temperature Martensitic Steels for Heavy-Duty Diesel Piston Applications

2022-03-29
2022-01-0599
Five different commercially available high-temperature martensitic steels were evaluated for use in a heavy-duty diesel engine piston application and compared to existing piston alloys 4140 and microalloyed steel 38MnSiVS5 (MAS). Finite element analyses (FEA) were performed to predict the temperature and stress distributions for severe engine operating conditions of interest, and thus aid in the selection of the candidate steels. Complementary material testing was conducted to evaluate the properties relevant to the material performance in a piston. The elevated temperature strength, strength evolution during thermal aging, and thermal property data were used as inputs into the FEA piston models. Additionally, the long-term oxidation performance was assessed relative to the predicted maximum operating temperature for each material using coupon samples in a controlled-atmosphere cyclic-oxidation test rig.
Journal Article

The Effect of Spark-Plug Heat Dispersal Range and Exhaust Valve Opening Timing on Cold-Start Emissions and Cycle-to-Cycle Variability

2021-09-21
2021-01-1180
The partnership for advancing combustion engines (PACE) is a US Department of Energy consortium involving multiple national laboratories and includes a goal of addressing key efficiency and emission barriers in light-duty engines fueled with a market-representative E10 gasoline. A major pillar of the initiative is the generation of detailed experimental data and modeling capabilities to understand and predict cold-start behavior. Cold-start, as defined by the time between first engine crank and three-way catalyst light-off, is responsible for a large percentage of NOx, unburned hydrocarbon and particulate matter emissions in light-duty engines. Minimizing emissions during cold-start is a trade-off between achieving faster light-off of the three-way catalyst and engine out emissions during that period.
Journal Article

Particle Matter Index and Fuel Wall-wetting Relations on Stochastic Pre-ignition

2021-09-21
2021-01-1163
This work explores the effect of the particle matter index (PMI) and aromatic content on fuel wall impingement associated with stochastic pre-ignition (SPI). Statically significant measurements of SPI rates are directly coupled with laser induced florescence (LIF) measurements of fuel dilution from spray-linear impingement. Literature suggests that PMI is could be correlated with the number of SPI events, but the root cause(s) of PMI and SPI are directly causational or are a predicator of SPI. Three fuels have been used in this study with 3 different PMI and two different aromatic contents. The fuels are direct injected at two different injection timings, an earlier injection timing which initially targets the piston crown, 310°CA bTDC, and a later injection timing that the liner, 220°CA bTDC start of injection timings (SOI) respectively. The earlier 310 SOI injection increases soot, whereas the later 220°CA SOI targets the liner and increases wall-wetting.
Journal Article

Fuel Stratification Effects on Gasoline Compression Ignition with a Regular-Grade Gasoline on a Single-Cylinder Medium-Duty Diesel Engine at Low Load

2021-09-21
2021-01-1173
Prior research studies have investigated a wide variety of gasoline compression ignition (GCI) injection strategies and the resulting fuel stratification levels to maintain control over the combustion phasing, duration, and heat release rate. Previous GCI research at the US Department of Energy’s Oak Ridge National Laboratory has shown that for a combustion mode with a low degree of fuel stratification, called “partial fuel stratification” (PFS), gasoline range fuels with anti-knock index values in the range of regular-grade gasoline (~87 anti-knock index or higher) provides very little controllability over the timing of combustion without significant boost pressures. On the contrary, heavy fuel stratification (HFS) provides control over combustion phasing but has challenges achieving low temperature combustion operation, which has the benefits of low NOX and soot emissions, because of the air handling burdens associated with the required high exhaust gas recirculation rates.
Journal Article

Fuel Effects on Advanced Compression Ignition Load Limits

2021-09-21
2021-01-1172
In order to maximize the efficiency of light-duty gasoline engines, the Co-Optimization of Fuels and Engines (Co-Optima) initiative from the U.S. Department of Energy is investigating multi-mode combustion strategies. Multi-mode combustion can be describe as using conventional spark-ignited combustion at high loads, and at the part-load operating conditions, various advanced compression ignition (ACI) strategies are being investigated to increase efficiency. Of particular interest to the Co-Optima initiative is the extent to which optimal fuel properties and compositions can enable higher efficiency ACI combustion over larger portions of the operating map. Extending the speed-load range of these ACI modes can enable greater part-load efficiency improvements for multi-mode combustion strategies.
X