Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Technical Paper

Droplet Behaviors of DI Gasoline Wall Impinging Spray by Spray Slicer

2020-04-14
2020-01-1152
Owing to the small size of engines and high injection pressures, it is difficult to avoid the fuel spray impingement on the combustion cylinder wall and piston head in Direct Injection Spark Ignition (DISI) engine, which is a possible source of hydrocarbons and soot emission. As a result, the droplets size and distribution are significantly important to evaluate the atomization and predict the impingement behaviors, such as stick, spread or splash. However, the microscopic behaviors of droplets are seldom reported due to the high density of small droplets, especially under high pressure conditions. In order to solve this problem, a “spray slicer” was designed to cut the spray before impingement as a sheet one to observe the droplets clearly. The experiment was performed in a constant volume chamber under non-evaporation condition, and a mini-sac injector with single hole was used.
Technical Paper

Modeling of the Rotary Engine Apex Seal Lubrication

2015-09-01
2015-01-2035
The Wankel rotary engine is more compact than conventional piston engines, but its oil and fuel consumption must be reduced to satisfy emission standards and customer expectations. A key step toward this goal is to develop a better understanding of the apex seal lubrication to reduce oil injection while reducing friction and maintaining adequate wear. This paper presents an apex seal dynamics model capable of estimating relative wear and predicting friction, by modeling the gas and oil flows at the seal interfaces with the rotor housing and groove flanks. Model predictions show that a thin oil film can reduce wear and friction, but to a limited extent as the apex seal running face profile is sharp due to the engine kinematics.
Journal Article

Diesel Combustion Noise Reduction by Controlling Piston Vibration

2015-04-14
2015-01-1667
It has been required recently that diesel engines for passenger cars meet various requirements, such as low noise, low fuel consumption, low emissions and high power. The key to improve the noise is to reduce a combustion noise known as “Diesel knock noise”. Conventional approaches to reduce the diesel knock are decreasing combustion excitation force due to pilot/pre fuel injection, adding ribs to engine blocks or improving noise transfer characteristics by using insulation covers. However, these approaches have negative effects, such as deterioration in fuel economy and increase in cost/weight. Therefore, modification of engine structures is required to reduce it. We analyzed noise transfer paths from a piston, a connecting rod, a crank shaft to an engine block and vibration behavior during engine operation experimentally, and identified that piston resonance was a noise source.
Journal Article

Oil Transport Cycle Model for Rotary Engine Oil Seals

2014-04-01
2014-01-1664
The rotary engine provides high power density compared to piston engine, but one of its downside is higher oil consumption. A model of the oil seals is developed to calculate internal oil consumption (oil leakage from the crankcase through the oil seals) as a function of engine geometry and operating conditions. The deformation of the oil seals trying to conform to housing distortion is calculated to balance spring force, O-ring and groove friction, and asperity contact and hydrodynamic pressure at the interface. A control volume approach is used to track the oil over a cycle on the seals, the rotor and the housing as the seals are moving following the eccentric rotation of the rotor. The dominant cause of internal oil consumption is the non-conformability of the oil seals to the housing distortion generating net outward scraping, particularly next to the intake and exhaust port where the housing distortion valleys are deep and narrow.
Journal Article

Visualization of the Rotary Engine Oil Transport Mechanisms

2014-04-01
2014-01-1665
The rotary engine provides high power density compared to piston engine, but one of its downside is higher oil consumption. In order to better understand oil transport, a laser induced fluorescence technique is used to visualize oil motion on the side of the rotor during engine operation. Oil transport from both metered oil and internal oil is observed. Starting from inside, oil accumulates in the rotor land during inward motion of the rotor created by its eccentric motion. Oil seals are then scraping the oil outward due to seal-housing clearance asymmetry between inward and outward motion. Cut-off seal does not provide an additional barrier to internal oil consumption. Internal oil then mixes with metered oil brought to the side of the rotor by gas leakage. Oil is finally pushed outward by centrifugal force, passes the side seals, and is thrown off in the combustion chamber.
Journal Article

Effect of Spray/Wall Interaction on Diesel Combustion and Soot Formation in Two-Dimensional Piston Cavity

2013-10-15
2013-32-9021
The effects of spray/wall interaction on diesel combustion and soot formation in a two-dimensional piston cavity were studied with a high speed color video camera in a constant volume combustion vessel. The two-dimensional piston cavity was applied to generate the impinging spray flame. In the cavity, the flat surface which plays a role as the cylinder head has a 13.5 degree angle with the injector axis and the impinging point was located 30 mm away from the nozzle tip. Three injection pressures of 100, 150, and 200 MPa and a single hole diesel injector (hole diameter: 0.133mm) were selected. The flame structure and combustion process were examined by using the color luminosity images. Two-color pyrometry was used to measure the line-of sight soot temperature and concentration by using the R and B channels of the color images. The soot mass generated by impinging spray flame is higher than that of the free spray flame.
Journal Article

Combustion Technology Development for a High Compression Ratio SI Engine

2011-08-30
2011-01-1871
Internal combustion engines still play a vital role in realizing the low carbon society. For spark ignition engines, further improvement in thermal efficiency can be achieved by increasing both compression and specific heat ratios. In the current work, the authors developed practical technologies to prevent output power loss due to knocking at full load, which is a critical issue for increasing compression ratio. These new technologies allowed to increase the compression ratio significantly and provide an equivalent torque level as a conventional engine. As a result, thermal efficiency has been improved at partial load.
Technical Paper

New Methodology of Life Cycle Assessment for Clean Energy Vehicle and New Car Model

2011-04-12
2011-01-0851
Mazda announced that all customers who purchase Mazda cars are provided with the joy of driving and excellent environmental and safety performance under slogan of "Sustainable Zoom-Zoom" long-term vision for technology development. The purpose of this study is to develop a new approach of Life Cycle Assessment (abbreviated to LCA) to be applied to clean energy vehicles and new car models. The improvement of both environmental performance, e.g., fuel consumption, exhaust emissions, vehicle weight reduction, and LCA that is a useful methodology to assess the environmental load of automobiles for their lifecycles has become more important. LCA by inventory analysis, for RX-8 Hydrogen RE as a rotary engine vehicle used hydrogen as clean energy, was carried out and disclosed the world for the first time. LCA for new Mazda 5 was carried out as the portfolio of all models, previously only the specific model equipped with fuel efficiency device based on ISO14040.
Technical Paper

Mechanism of Combustion Chamber Deposit Interference and Effects of Gasoline Additives on CCD Formation

1995-02-01
950741
Recently, an audible clattering noise has been noticed in some vehicles during cold engine starts, mainly in the U.S. The clattering is referred to by various names, such as “carbon knock,” “carbon rap,” “mechanical knock” and “combustion chamber deposit interference (CCDI).” CCDI is believed to be caused by the deposit formation in the combustion chamber. In the research effort described here, CCDI was successfully reproduced in a 2.5-liter multipoint injection engine with a polyolefin amine gasoline additive. It was determined that the CCDI was caused by mechanical contact between the piston top and the cylinder head deposits. The vibration due to CCDI originated mainly at the thrust side of the piston right after top-dead-center on compression stroke and was characterized by a high frequency response. Combustion chamber deposit (CCD) formation depends on many factors, including gasoline additives.
Technical Paper

Mechanism of Improving Fuel Efficiency by Miller Cycle and Its Future Prospect

1995-02-01
950974
We have introduced a supercharged Miller Cycle gasoline engine into the market in 1993 as an answer to the requirement of reduction in CO2 emission of vehicles. Improvement in the fuel economy of a supercharged Miller Cycle engine is achieved by the reduction of friction loss due to a smaller displacement. The biggest problem of a conventional supercharged engine is knocking. In order to avoid the knocking, lower compression ratio, which accompanies lower expansion ratio, has been adopted by the conventonal engines and achieved insufficient fuel economy improvement. The Miller Cycle obtains superior anti-knocking performance as well as lowering compression ratio, while keeping the high expansion ratio. The decreased friction loss by the smaller displacement has completely lead to the improvement of fuel economy.
Technical Paper

Development of V6 Miller Cycle Gasoline Engine

1994-03-01
940198
A gasoline engine with an entirely new combustion cycle deriving from Miller Cycle is developed. By delaying closing timing of intake valve and with new Lysholm Compressor which provides higher boost pressure, engine knocking is avoided while high compression ratio is maintained and approximately 1.5 times larger toque than that of a naturally aspirated(NA) engine of the same displacement is realized. This V6 Miller Cycle gasoline engine can be the alternative to a larger displacement NA engine because of its equivalent torque performance and its lower fuel consumption by the effect of smaller displacement.
Technical Paper

Mazda New Lightweight and Compact V6 Engines

1992-02-01
920677
Mazda has developed new-generation V6 engines. The new V6 series comprises 2.5-litre, 2.0-litre and 1.8-litre engines. The development objective was to ensure high output performance for excellent “acceleration and top-end feel”, while satisfying “Clean & Economy” requirements. The engines also had to have a pleasant sound. Mazda selected for these engines a short stroke, 60° V-shaped 24 valve DOHC with an aluminum cylinder block. Various techniques are adopted as follows: Combustion improvement and optimization of control to achieve high fuel economy and low emissions Improvement of volumetric efficiency, inertia reduction of rotating parts and optimization of control to achieve excellent “acceleration and top-end feel” Adoption of a high-rigidity, two-piece cylinder block and crankshaft and weight reduction of reciprocating parts to achieve a pleasant engine sound Material changes and elimination of dead space to achieve a compact, lightweight engine
Technical Paper

A Study About In-Cylinder Flow and Combustion in a 4-Valve S.I. Engine

1992-02-01
920574
Lean-burn technology is now being reviewed again in view of demands for higher efficiency and cleanness in internal combustion engines. The improvement of combustion using in-cylinder gas flow control is the fundamental technology for establishing lean-burn technology, but the great increase in main combustion velocity due to intensifying of turbulence causes a deterioration in performance such as increase in heat loss and N0x. Thus, it is desirable to improve combustion stability while suppressing the increase in main burn velocity as much as possible (1). It is expected that the fluid characteristics of the in-cylinder tumbling motion that the generated vortices during intake stroke breake down in end-half of compression stroke will satisfy the above requisition. This study is concerned with the effects of enhancing of tumble intensity on combustion in 4-valve S. I. engines.
Technical Paper

Application of Vibration Damping Steel Sheet for Autobody Structural Parts

1992-02-01
920249
As a demand for vehicles of higher functionality grows, automakers and material suppliers are devoting increasing efforts to develop technologies for greater safety, lighter weight, higher corrosion resistance, and enhanced quietness. The resin-sandwiched vibration damping steel sheet (VDSS), developed as a highly functional material for reducing vehicle vibration and noise, has been used for oil pans1) and compartment partitions2). First applied for a structural dash panel of the new Mazda 929, a Zn-Ni electroplated VDSS which allows direct electric welding has contributed to greater weight reduction as well as improved quietness.
Technical Paper

Combustion Characteristics in Hydrogen Fueled Rotary Engine

1992-02-01
920302
A hydrogen-fueled rotary engine was investigated with respect to the effects of the fuel supply method, spark plug rating and spark plug cavity volume on abnormal combustion. It was found that abnormal combustion was caused by pre-ignition from the spark plugs and gas leakage through the plug hole cavity. The hydrogen-fueled rotary engine could function through a wide operating range at a theoretical air-to-fuel ratio by optimising the above factors. Consequently, the hydrogen-fueled rotary engine achieved output power of up to 63%-75% of the gasoline specification, while the hydrogen-fueled reciprocating engine only reached 50%.
Technical Paper

Diagnosis and Objective Evaluation of Gear Rattle

1991-05-01
911082
The objectives of this work were to establish a method to diagnose the source of gear rattle and to evaluate the rattle objectively. The methods are described in detail, applied to two passenger cars as an example. Investigations were conducted into transmission rattle under transient conditions. By analysing the transmission casing vibration with respect to the engine flywheel angle, and presenting the data in the form of contour maps, it was shown that the two vehicles had different characteristics of gear impacts. Further measurements of the angular motion of each gear revealed the impact conditions at the input mesh in the transmission largely controlled the character of the rattle and were fundamentally different between the two vehicles. A rattle index was developed, based on the casing vibration under transient driving conditions.
Technical Paper

The Driving Simulator with Large Amplitude Motion System

1991-02-01
910113
An Advanced driving simulator has been developed at Mazda Yokohama Research Center. The primary use of this simulator is to research future driver-vehicle systems. In an emergency situation, a driver must respond rapidly to perceived motion and visual stimulus to avoid an accident. In such cases, because the time delay associated with the perception of motion cues is shorter than visual and auditory cues, the driver will strongly rely upon perceived motion to control the vehicle. Hence, a driving simulator to be used in the research of driver-vehicle interactions in emergency driving must include a high performance motion system capable of large amplitude lateral motion. The Mazda simulator produces motion cues in four degrees of freedom, provides visual and auditory cues, and generates control feel on the steering wheel. This paper describes the merit of the large amplitude motion system and the features of this newly developed driving simulator.
Technical Paper

Superior Color Matching of Fascia and Body

1987-02-01
870108
To coat flexible parts such as R-RIM Urethane Fascia baked at low temperatures, a different painting approach from one for steel parts is employed. Since paint color differences between the fascia and the body would downgrade the product, a color matching technique is required. For better color matching, matching of color shades was attempted with improvement of paint resin, optimal pigment blending and analysis of how color is affected by varying conditions. Application of a primer for finishing has brought about the desired paint film distinctness. Introduced was also the high weatherablilty paint for plastic parts. All such techniques were utilized on R-RIM Urethane Fascia to achieve high-grade color matching.
Technical Paper

Material Technology Development Applied to Rotary Engine at Mazda

1986-02-01
860560
New material and processing technologies were developed for main components of the rotary engine to establish its reliability and durability. The components discussed in this paper are the rotor housing, side housing, and sealing elements. Also described are the material and processing technologies which resolved problems about their strength, rigidity, wear, etc.
X